Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

94 CHAPTER 4 Virtual Work and Energy Methods


Shear Force


Theshearforce,S,actingonthemembersectioninFig.4.5producesadistributionofverticalshearstress
whichdependsonthegeometryofthecrosssection.However,sincetheelement,δA,isinfinitesimally
small, we may regard the shear stress,τ, as constant over the element. The shear force,δS,onthe
elementisthen


δS=τδA (4.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a virtual shear
strain,γv, at the element. This shear strain represents the angular rotation in a vertical plane of the
elementδA×δxrelativetothelongitudinalcentroidalaxisofthemember.Theverticaldisplacement
atthesectionbeingconsideredis,therefore,γvδx.Theinternalvirtualwork,δwi,S,donebytheshear
force,S,ontheelementallengthofthememberisgivenby


δwi,S=


A

τdAγvδx

Auniformshearstressthroughthecrosssectionofabeammaybeassumedifweallowfortheactual
variation by including a form factor,β[Ref. 1]. The expression for the internal virtual work in the
membermaythenbewrittenas


δwi,S=


A

β

(

S

A

)

dAγvδx

or


δwi,S=βSγvδx (4.14)

Hence,thevirtualworkdonebytheshearforceduringthearbitraryvirtualstraininamemberoflength
Lis


wi,S=β


L

Sγvdx (4.15)

Foralinearlyelasticmember,asinthecaseofaxialforce,wemayexpressthevirtualshearstrain,γv,
intermsofanequivalentvirtualshearforce,Sv:


γv=

τv
G

=

Sv
GA

sothatfromEq.(4.15)


wi,S=β


L

SASv
GA

dx (4.16)

Forastructurecomprisinganumberoflinearlyelasticmembersthetotalinternalwork,Wi,S,doneby
theshearforcesis


Wi,S=


β


L

SASv
GA

dx (4.17)
Free download pdf