4.3 Applications of the Principle of Virtual Work 103
tookplace.Theexternalvirtualworkdonebytheunitloadis,fromFig.4.10(b),1υB.Thedeflection,υB,
isassumedtobecausedbybendingonly;inotherwords,weareignoringanydeflectionsduetoshear.
TheinternalvirtualworkisgivenbyEq.(4.21),which,sinceonlyonememberisinvolved,becomes
Wi,M=
∫L
0
MAMv
EI
dx (i)
Thevirtualmoments,Mv,areproducedbyaunitloadsothatweshallreplaceMvbyM 1 .Then
Wi,M=
∫L
0
MAM 1
EI
dx (ii)
Atanysectionofthebeamadistancexfromthebuilt-inend
MA=−
w
2
(L−x)^2 M 1 =− 1 (L−x)
SubstitutingforMAandM 1 inEq.(ii)andequatingtheexternalvirtualworkdonebytheunitloadto
theinternalvirtualwork,wehave
1 υB=
∫L
0
w
2 EI
(L−x)^3 dx
whichgives
υB=−
w
2 EI
[
1
4
(L−x)^4
]L
0
sothat
υB=
wL^4
8 EI
NotethatυBisinfactnegative,butthepositivesignhereindicatesthatitisinthesamedirectionasthe
unitload.
Example 4.5
Determinetherotation—thatis,theslope—ofthebeamABCshowninFig.4.11(a)atA.
The actual rotation of the beam at A produced by the actual concentrated load,W,isθA. Let us
supposethatavirtualunitmomentisappliedatAbeforetheactualrotationtakesplace,asshownin
Fig.4.11(b).ThevirtualunitmomentinducesvirtualsupportreactionsofRv,A(=1/L)actingdownward
andRv,C(=1/L)actingupward.Theactualinternalbendingmomentsare
MA=+
W
2
x 0 ≤x≤L/ 2
MA=+
W
2
(L−x) L/ 2 ≤x≤L