4.3 Applications of the Principle of Virtual Work 103tookplace.Theexternalvirtualworkdonebytheunitloadis,fromFig.4.10(b),1υB.Thedeflection,υB,
isassumedtobecausedbybendingonly;inotherwords,weareignoringanydeflectionsduetoshear.
TheinternalvirtualworkisgivenbyEq.(4.21),which,sinceonlyonememberisinvolved,becomes
Wi,M=∫L
0MAMv
EIdx (i)Thevirtualmoments,Mv,areproducedbyaunitloadsothatweshallreplaceMvbyM 1 .Then
Wi,M=∫L
0MAM 1
EI
dx (ii)Atanysectionofthebeamadistancexfromthebuilt-inend
MA=−w
2(L−x)^2 M 1 =− 1 (L−x)SubstitutingforMAandM 1 inEq.(ii)andequatingtheexternalvirtualworkdonebytheunitloadto
theinternalvirtualwork,wehave
1 υB=∫L
0w
2 EI(L−x)^3 dxwhichgives
υB=−w
2 EI[
1
4
(L−x)^4]L
0sothat
υB=wL^4
8 EINotethatυBisinfactnegative,butthepositivesignhereindicatesthatitisinthesamedirectionasthe
unitload.
Example 4.5
Determinetherotation—thatis,theslope—ofthebeamABCshowninFig.4.11(a)atA.
The actual rotation of the beam at A produced by the actual concentrated load,W,isθA. Let us
supposethatavirtualunitmomentisappliedatAbeforetheactualrotationtakesplace,asshownin
Fig.4.11(b).ThevirtualunitmomentinducesvirtualsupportreactionsofRv,A(=1/L)actingdownward
andRv,C(=1/L)actingupward.Theactualinternalbendingmomentsare
MA=+
W
2
x 0 ≤x≤L/ 2MA=+
W
2
(L−x) L/ 2 ≤x≤L