118 CHAPTER 5 Energy Methods
andthehorizontalmovementofDis
(^) D,h=
880 × 106
1800 × 200000
=2.44mm
whichagreewiththevirtualworksolution(Example4.6).Thepositivevaluesof (^) B,vand (^) D,hindicate
thatthedeflectionsareinthedirectionsofPB,fandPD,f.
Theanalysisofbeamdeflectionproblemsbycomplementaryenergyissimilartothatofpin-jointed
frameworks,exceptthatweassumeinitiallythatdisplacementsarecausedprimarilybybendingaction.
Shearforceeffectsarediscussedlaterinthechapter.Figure5.5showsatip-loadedcantileverofuniform
crosssectionandlengthL.ThetiploadPproducesaverticaldeflection (^) vwhichwewanttofind.
ThetotalcomplementaryenergyCofthesystemisgivenby
C=
∫
L
∫M
0
dθdM−P (^) v (5.12)
inwhich
∫M
0 dθdMisthecomplementaryenergyofanelementδzofthebeam.Thiselementsubtends
anangleδθatitscenterofcurvatureduetotheapplicationofthebendingmomentM.Fromtheprinciple
ofthestationaryvalueofthetotalcomplementaryenergy,
∂C
∂P
=
∫
L
dθ
dM
dP
− (^) v= 0
or
(^) v=
∫
L
dθ
dM
dP
(5.13)
Equation(5.13)isapplicabletoeitheranonlinearoralinearelasticbeam.Toproceedfurther,therefore,
werequiretheload–displacement(M–θ)andbendingmoment–load(M–P)relationships.Itisimma-
terialforthepurposesofthisillustrativeproblemwhetherthesystemislinearornonlinearsincethe
Fig.5.5
Beam deflection by the method of complementary energy.