Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

118 CHAPTER 5 Energy Methods


andthehorizontalmovementofDis


(^) D,h=


880 × 106

1800 × 200000

=2.44mm

whichagreewiththevirtualworksolution(Example4.6).Thepositivevaluesof (^) B,vand (^) D,hindicate
thatthedeflectionsareinthedirectionsofPB,fandPD,f.
Theanalysisofbeamdeflectionproblemsbycomplementaryenergyissimilartothatofpin-jointed
frameworks,exceptthatweassumeinitiallythatdisplacementsarecausedprimarilybybendingaction.
Shearforceeffectsarediscussedlaterinthechapter.Figure5.5showsatip-loadedcantileverofuniform
crosssectionandlengthL.ThetiploadPproducesaverticaldeflection (^) vwhichwewanttofind.
ThetotalcomplementaryenergyCofthesystemisgivenby


C=


L

∫M

0

dθdM−P (^) v (5.12)
inwhich


∫M

0 dθdMisthecomplementaryenergyofanelementδzofthebeam.Thiselementsubtends
anangleδθatitscenterofcurvatureduetotheapplicationofthebendingmomentM.Fromtheprinciple
ofthestationaryvalueofthetotalcomplementaryenergy,


∂C
∂P

=


L


dM
dP

− (^) v= 0
or
(^) v=



L


dM
dP

(5.13)

Equation(5.13)isapplicabletoeitheranonlinearoralinearelasticbeam.Toproceedfurther,therefore,
werequiretheload–displacement(M–θ)andbendingmoment–load(M–P)relationships.Itisimma-
terialforthepurposesofthisillustrativeproblemwhetherthesystemislinearornonlinearsincethe


Fig.5.5


Beam deflection by the method of complementary energy.

Free download pdf