Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
5.3Application to Deflection Problems 119

mechanicsofthesolutionarethesameineithercase.WechoosethereforealinearM–θrelationshipas
thisisthecaseinthemajorityoftheproblemsweconsider.Hence,fromFig.5.5,


δθ=Kδz

or


dθ=

M

EI

dz

(

1

K

=

EI

M

fromsimplebeamtheory

)

wheretheproductmodulusofelasticity×secondmomentofareaofthebeamcrosssectionisknown
asthebendingorflexuralrigidityofthebeam.Also,


M=Pz

sothat
dM
dP


=z

Substitutionfordθ,M,anddM/dPinEq.(5.13)gives


(^) v=


∫L

0

Pz^2
EI

dz

or


(^) v=


PL^3

3 EI

Thefictitiousloadmethodoftheframeworkexamplemaybeusedinthesolutionofbeamdeflection
problemswherewerequiredeflectionsatpositionsonthebeamotherthanconcentratedloadpoints.


Suppose that we are to find the tip deflection (^) Tof the cantilever of the previous example in which
theconcentratedloadhasbeenreplacedbyauniformlydistributedloadofintensitywperunitlength
(seeFig.5.6).First,weapplyafictitiousloadPfatthepointwherethedeflectionisrequired.Thetotal
complementaryenergyofthesystemis


C=


L

∫M

0

dθdM− (^) TPf−


∫L

0

wdz

Fig.5.6


Deflection of a uniformly loaded cantilever by the method of complementary energy.

Free download pdf