5.3Application to Deflection Problems 119
mechanicsofthesolutionarethesameineithercase.WechoosethereforealinearM–θrelationshipas
thisisthecaseinthemajorityoftheproblemsweconsider.Hence,fromFig.5.5,
δθ=Kδz
or
dθ=
M
EI
dz
(
1
K
=
EI
M
fromsimplebeamtheory
)
wheretheproductmodulusofelasticity×secondmomentofareaofthebeamcrosssectionisknown
asthebendingorflexuralrigidityofthebeam.Also,
M=Pz
sothat
dM
dP
=z
Substitutionfordθ,M,anddM/dPinEq.(5.13)gives
(^) v=
∫L
0
Pz^2
EI
dz
or
(^) v=
PL^3
3 EI
Thefictitiousloadmethodoftheframeworkexamplemaybeusedinthesolutionofbeamdeflection
problemswherewerequiredeflectionsatpositionsonthebeamotherthanconcentratedloadpoints.
Suppose that we are to find the tip deflection (^) Tof the cantilever of the previous example in which
theconcentratedloadhasbeenreplacedbyauniformlydistributedloadofintensitywperunitlength
(seeFig.5.6).First,weapplyafictitiousloadPfatthepointwherethedeflectionisrequired.Thetotal
complementaryenergyofthesystemis
C=
∫
L
∫M
0
dθdM− (^) TPf−
∫L
0
wdz
Fig.5.6
Deflection of a uniformly loaded cantilever by the method of complementary energy.