4 CHAPTER 1 Basic Elasticity
Fig.1.
Internal force components at the point O.
forcesδPmaybeconsidereduniformlydistributedoverasmallareaδAofeachfaceoftheplaneatthe
correspondingpointO,asinFig.1.2.ThestressatOisthendefinedbytheequation
Stress= lim
δA→ 0
δP
δA
(1.1)
ThedirectionsoftheforcesδPinFig.1.2aresuchthattheyproducetensilestressesonthefaces
oftheplanenn.ItmustberealizedherethatwhilethedirectionofδPisabsolute,thechoiceofplane
is arbitrary so that although the direction of the stress at O will always be in the direction ofδP, its
magnitudedependsontheactualplanechosen,sinceadifferentplanewillhaveadifferentinclination
andthereforeadifferentvaluefortheareaδA.Thismaybemoreeasilyunderstoodbyreferencetothe
barinsimpletensioninFig.1.3.Onthecross-sectionalplanemm,theuniformstressisgivenbyP/A,
whileontheinclinedplanem′m′,thestressisofmagnitudeP/A′.Inbothcases,thestressesareparallel
tothedirectionofP.
Generally,thedirectionofδPisnotnormaltotheareaδA,inwhichcaseitisusualtoresolveδP
intotwocomponents:one,δPn,normaltotheplaneandtheother,δPs,actingintheplaneitself(see
Fig.1.2).NotethatinFig.1.2theplanecontainingδPisperpendiculartoδA.Thestressesassociated
withthesecomponentsareanormalordirectstressdefinedas
σ=lim
δA→ 0
δPn
δA
(1.2)
andashearstressdefinedas
τ= lim
δA→ 0
δPs
δA