124 CHAPTER 5 Energy Methods
Table 5.2
① ② ③ ④ ⑤
Member Length F ∂F/∂R FL∂F/∂R
AB L −R/
√
2 − 1 /
√
2 RL/ 2
BC L −R/√ 2 − 1 /√ 2 RL/ 2
CD L −(P+R/
√
2 ) − 1 /
√
2 L(P+R/
√
2 )/
√
2
DA L −R/
√
2 − 1 /
√
2 RL/ 2
AC
√
2 L
√
2 P+R 1 L( 2 P+
√
2 R)
BD
√
2 LR 1
√
2 RL
=4.83RL+2.707PL
isforcedtofit.TheloadRinBDwillthenhavesufferedadisplacement (^) Rinadditiontothatcaused
bythechangeinlengthofBDproducedbytheloadP.Thetotalcomplementaryenergyisthen
C=
∑k
i= 1
∫Fi
0
λidFi−P −R (^) R
and
∂C
∂R
=
∑k
i= 1
λi
∂Fi
∂R
− (^) R= 0
or
(^) R=
1
AE
∑k
i= 1
FiLi
∂Fi
∂R
(5.17)
Obviously,thesummationterminEq.(5.17)hasthesamevalueasinthepreviouscasesothat
R=−0.56P+
AE
4.83L
(^) R
Hence,theforcesinthemembersareduetobothappliedloadsandinitiallackoffit.
Somecareshouldbegiventothesignofthelackoffit (^) R.WenoteherethatthememberBDis
shortbyanamount (^) Rsothattheassumptionofapositivesignfor (^) Riscompatiblewiththetensile
forceR. If BD were initially too long, then the total complementary energy of the system would be
writtenas
C=
∑k
i= 1
∫Fi
0
λidFi−P −R(− (^) R)
giving
− (^) R=
1
AE
∑k
i= 1
FiLi
∂Fi
∂R