Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

124 CHAPTER 5 Energy Methods


Table 5.2
① ② ③ ④ ⑤
Member Length F ∂F/∂R FL∂F/∂R
AB L −R/

2 − 1 /

2 RL/ 2
BC L −R/√ 2 − 1 /√ 2 RL/ 2
CD L −(P+R/

2 ) − 1 /

2 L(P+R/

2 )/

2
DA L −R/

2 − 1 /

2 RL/ 2
AC

2 L

2 P+R 1 L( 2 P+

2 R)
BD

2 LR 1

2 RL
=4.83RL+2.707PL

isforcedtofit.TheloadRinBDwillthenhavesufferedadisplacement (^) Rinadditiontothatcaused
bythechangeinlengthofBDproducedbytheloadP.Thetotalcomplementaryenergyisthen


C=

∑k

i= 1

∫Fi

0

λidFi−P −R (^) R
and
∂C
∂R


=

∑k

i= 1

λi

∂Fi
∂R

− (^) R= 0
or
(^) R=


1

AE

∑k

i= 1

FiLi

∂Fi
∂R

(5.17)

Obviously,thesummationterminEq.(5.17)hasthesamevalueasinthepreviouscasesothat


R=−0.56P+

AE

4.83L

(^) R
Hence,theforcesinthemembersareduetobothappliedloadsandinitiallackoffit.
Somecareshouldbegiventothesignofthelackoffit (^) R.WenoteherethatthememberBDis
shortbyanamount (^) Rsothattheassumptionofapositivesignfor (^) Riscompatiblewiththetensile
forceR. If BD were initially too long, then the total complementary energy of the system would be
writtenas


C=

∑k

i= 1

∫Fi

0

λidFi−P −R(− (^) R)
giving
− (^) R=


1

AE

∑k

i= 1

FiLi

∂Fi
∂R
Free download pdf