126 CHAPTER 5 Energy Methods
Fig.5.10
Framework of Example 5.4.
Example 5.4
Aplane,pin-jointedframeworkconsistsofsixbarsformingarectangleABCD4000mmby3000mm
with two diagonals, as shown in Fig. 5.10. The cross-sectional area of each bar is 200mm^2 ,and
theframeisunstressedwhenthetemperatureofeachmemberisthesame.Becauseofthelocalcon-
ditions, the temperature of one of the 3000mm members is raised by 30◦C. Calculate the resulting
forces in all the members if the coefficient of linear expansionαofthebarsis7× 10 −^6 /◦C.E=
200000N/mm^2.
Suppose that BC is the heated member; then the increase in length of BC= 3000 × 30 ×
7 × 10 −^6 =0.63mm.Therefore,fromEq.(5.17),
−0.63=
1
200 × 200000
∑k
i= 1
FiLi
∂Fi
∂R
(i)
Substitutionfromthesummationofcolumn⑤inTable5.4intoEq.(i)gives
R=
−0.63× 200 × 200000
48000
=−525N
Column⑥ofTable5.4isnowcompletedfortheforceineachmember.
Sofar,ouranalysishasbeenlimitedtosinglyredundantframeworks,althoughthesameprocedure
maybeadoptedtosolveamulti-redundantframeworkof,say,mredundancies.Therefore,insteadofa
singleequationofthetype(5.15),wewouldhavemsimultaneousequations
∂C
∂Rj
=
∑k
i= 1
λi
∂Fi
∂Rj
= 0 (j=1,2,...,m)
fromwhichthemunknownsR 1 ,R 2 ,...,Rmwouldbeobtained.TheforcesFinthemembersfollow,
beingexpressedinitiallyintermsoftheappliedloadsandR 1 ,R 2 ,...,Rm.
Othertypesofstaticallyindeterminatestructurearesolvedbytheapplicationoftotalcomplementary
energywithequalfacility.TheproppedcantileverofFig.5.11isanexampleofasinglyredundantbeam
structureforwhichtotalcomplementaryenergyreadilyyieldsasolution.