5.4Application to the Solution of Statically Indeterminate Systems 127
Table 5.4Tension positive
① ② ③ ④ ⑤ ⑥
Member L(mm) F(N) ∂F/∂R FL∂F/∂R Force(N)
AB 4000 4R/ 34 /3 64000R/ 9 − 700
BC 3000 R 1 3000 R − 525
CD 4000 4R/ 34 /3 64000R/ 9 − 700
DA 3000 R 1 3000 R − 525
AC 5000 − 5 R/ 3 − 5 /3 125000R/ 9 875
DB 5000 − 5 R/ 3 − 5 /3 125000R/ 9 875
= 48000 R
Fig.5.11
Analysis of a propped cantilever by the method of complementary energy.
Thetotalcomplementaryenergyofthesystemis,withthenotationofEq.(5.12),
C=
∫
L
∫M
0
dθdM−P (^) C−RB (^) B
where (^) Cand (^) BarethedeflectionsatCandB,respectively.Usually,inproblemsofthistype, (^) Bis
eitherazeroforarigidsupportoraknownamount(sometimesintermsofRB)forasinkingsupport.
Hence,forastationaryvalueofC,
∂C
∂RB
=
∫
L
dθ
∂M
∂RB
− (^) B= 0
fromwhichequationRBmaybefound;RBbeingcontainedintheexpressionforthebendingmomentM.
Obviously,thesameprocedureisapplicabletoabeamhavingamultiredundantsupportsystem—for
example,acontinuousbeamsupportingaseriesofloadsP 1 ,P 2 ,...,Pn.Thetotalcomplementaryenergy
ofsuchabeamwouldbegivenby
C=
∫
L
∫M
0
dθdM−
∑m
j= 1
Rj (^) j−
∑n
r= 1
Pr (^) r