138 CHAPTER 5 Energy Methods
Fig.5.18
Distribution of bending moment in frame of Example 5.6.
Infact,thequestionofwhetherastructurepossesseslinearornonlinearcharacteristicsarisesonly
after the initial step of writing down expressions for the total potential or complementary energies.
However,agreatnumberofstructuresarelinearlyelasticandpossessuniquepropertieswhichenable
solutions,insomecases,tobemoreeasilyobtained.Theremainderofthischapterisdevotedtothese
methods.
5.5 UnitLoadMethod...................................................................................
InSection5.3,wediscussedthedummyorfictitiousloadmethodofobtainingdeflectionsofstructures.
Foralinearlyelasticstructure,themethodmaybestreamlinedasfollows.Considertheframeworkof
Fig.5.3inwhichwerequire,say,tofindtheverticaldeflectionofthepointC.Followingtheprocedure
ofSection5.3,wewouldplaceaverticaldummyloadPfatCandwritedownthetotalcomplementary
energyoftheframework,thatis,
C=
∑k
i= 1
∫Fi
0
λidFi−
∑n
r= 1
(^) rPr (seeEq.(5.9))
ForastationaryvalueofC,
∂C
∂Pf
=
∑k
i= 1
λi
∂Fi
∂Pf
− (^) C= 0 (5.18)