148 CHAPTER 5 Energy Methods
ofalltheloadsis
V=
∑n
r= 1
Vr=
∑n
r= 1
(−Pr (^) r)
andtheTPEofthesystemisgivenby
TPE=U+V=U+
∑n
r= 1
(−Pr (^) r) (5.22)
5.8 ThePrincipleoftheStationaryValueoftheTotalPotentialEnergy...........................
Letusnowconsideranelasticbodyinequilibriumunderaseriesofexternalloads,P 1 ,P 2 ,...,Pn,and
supposethatweimposesmallvirtualdisplacementsδ 1 ,δ 2 ,...,δninthedirectionsoftheloads.
Thevirtualworkdonebytheloadsisthen
∑n
r= 1
Prδr
This work will be accompanied by an increment of strain energyδUin the elastic body, since by
specifying virtual displacements of the loads we automatically impose virtual displacements on the
particlesofthebodyitself,asthebodyiscontinuousandisassumedtoremainso.Thisincrementin
strainenergymayberegardedasnegativevirtualworkdonebytheparticlessothatthetotalworkdone
duringthevirtualdisplacementis
−δU+
∑n
r= 1
Prδr
The body is in equilibrium under the applied loads so that by the principle of virtual work the
precedingexpressionmustbeequaltozero.Hence
δU−
∑n
r= 1
Prδr= 0 (5.23)
TheloadsPrremainconstantduringthevirtualdisplacement;therefore,Eq.(5.23)maybewritten
δU−δ
∑n
r= 1
Pr (^) r= 0
or,fromEq.(5.22)
δ(U+V)= 0 (5.24)
Thus,thetotalpotentialenergyofanelasticsystemhasastationaryvalueforallsmalldisplacements
ifthesystemisinequilibrium.