148 CHAPTER 5 Energy Methods
ofalltheloadsis
V=
∑nr= 1Vr=∑nr= 1(−Pr (^) r)
andtheTPEofthesystemisgivenby
TPE=U+V=U+
∑nr= 1(−Pr (^) r) (5.22)
5.8 ThePrincipleoftheStationaryValueoftheTotalPotentialEnergy...........................
Letusnowconsideranelasticbodyinequilibriumunderaseriesofexternalloads,P 1 ,P 2 ,...,Pn,and
supposethatweimposesmallvirtualdisplacementsδ 1 ,δ 2 ,...,δninthedirectionsoftheloads.
Thevirtualworkdonebytheloadsisthen
∑nr= 1PrδrThis work will be accompanied by an increment of strain energyδUin the elastic body, since by
specifying virtual displacements of the loads we automatically impose virtual displacements on the
particlesofthebodyitself,asthebodyiscontinuousandisassumedtoremainso.Thisincrementin
strainenergymayberegardedasnegativevirtualworkdonebytheparticlessothatthetotalworkdone
duringthevirtualdisplacementis
−δU+∑nr= 1PrδrThe body is in equilibrium under the applied loads so that by the principle of virtual work the
precedingexpressionmustbeequaltozero.Hence
δU−∑nr= 1Prδr= 0 (5.23)TheloadsPrremainconstantduringthevirtualdisplacement;therefore,Eq.(5.23)maybewritten
δU−δ∑nr= 1Pr (^) r= 0
or,fromEq.(5.22)
δ(U+V)= 0 (5.24)
Thus,thetotalpotentialenergyofanelasticsystemhasastationaryvalueforallsmalldisplacements
ifthesystemisinequilibrium.