8 CHAPTER 1 Basic Elasticity
Fig.1.
Stresses on the faces of an element at a point in an elastic body.
whichsimplifiesto
τxyδyδzδx+∂τxy
∂xδyδz(δx)^2
2−τyxδxδzδy−∂τyx
∂yδxδz(δy)^2
2= 0
Dividingbyδxδyδzandtakingthelimitasδxandδyapproachzero.
Similarly,τxy=τyx
τxz=τzx
τyz=τzy⎫
⎬
⎭
(1.4)
Wesee,therefore,thatashearstressactingonagivenplane(τxy,τxz,τyz)isalwaysaccompaniedby
anequalcomplementary shearstress(τyx,τzx,τzy)actingonaplaneperpendiculartothegivenplane
andintheoppositesense.
Nowconsideringtheequilibriumoftheelementinthexdirection
(
σx+
∂σx
∂xδx)
δyδz−σxδyδz+(
τyx+∂τyx
∂yδy)
δxδz−τyxδxδz+(
τzx+∂τzx
∂zδz)
δxδy−τzxδxδy+Xδxδyδz= 0