6.3Stiffness Matrix for Two Elastic Springs in Line 175
ThefirststepistorewriteEq.(6.13)inpartitionedformas
⎧
⎨
⎩
Fx,1
Fx,2
Fx,3
⎫
⎬
⎭
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
ka
..
. −ka 0
························
−ka
..
. ka+kb −kb
0
..
. −kb kb
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎧
⎨
⎩
u 1 = 0
u 2
u 3
⎫
⎬
⎭
(6.18)
InEq.(6.18),Fx,1istheunknownreactionatnode1,u 1 andu 2 areunknownnodaldisplacements,while
Fx,2andFx,3areknownappliedloads.ExpandingEq.(6.18)bymatrixmultiplication,weobtain
{Fx,1}=[−ka 0]
{
u 2
u 3
}{
Fx,2
Fx,3
}
=
[
ka+kb −kb
−kb kb
]{
u 2
u 3
}
(6.19)
InversionofthesecondofEqs.(6.19)givesu 2 andu 3 intermsofFx,2andFx,3.Substitutionofthese
valuesinthefirstequationthenyieldsFx,1.
Thus,
{
u 2
u 3
}
=
[
ka+kb −kb
−kb kb
]− 1 {
Fx,2
Fx,3
}
or
{
u 2
u 3
}
=
[
1 /ka 1 /ka
1 /ka 1 /kb+ 1 /ka
]{
Fx,2
Fx,3
}
Hence,
{Fx,1}=[−ka 0]
[
1 /ka 1 /ka
1 /ka 1 /kb+ 1 /ka
]{
Fx,2
Fx,3
}
whichgives
Fx,1=−Fx,2−Fx,3
aswouldbeexpectedfromequilibriumconsiderations.Inproblemswherereactionsarenotrequired,
equationsrelatingknownappliedforcestounknownnodaldisplacementsmaybeobtainedbydeleting
the rows and columns of [K] corresponding to zero displacements. This procedure eliminates the
necessityofrearrangingrowsandcolumnsintheoriginalstiffnessmatrixwhenthefixednodesarenot
convenientlygroupedtogether.
Finally,theinternalforcesinthespringsmaybedeterminedfromtheforce–displacementrelationship
ofeachspring.Thus,ifSaistheforceinthespringjoiningnodes1and2,then
Sa=ka(u 2 −u 1 )
Similarly,forthespringbetweennodes2and3
Sb=kb(u 3 −u 2 )