Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.3Stiffness Matrix for Two Elastic Springs in Line 175

ThefirststepistorewriteEq.(6.13)inpartitionedformas




Fx,1
Fx,2
Fx,3




=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

ka

..

. −ka 0
························
−ka


..

. ka+kb −kb


0

..

. −kb kb


⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦




u 1 = 0
u 2
u 3




(6.18)

InEq.(6.18),Fx,1istheunknownreactionatnode1,u 1 andu 2 areunknownnodaldisplacements,while
Fx,2andFx,3areknownappliedloads.ExpandingEq.(6.18)bymatrixmultiplication,weobtain


{Fx,1}=[−ka 0]

{

u 2
u 3

}{

Fx,2
Fx,3

}

=

[

ka+kb −kb
−kb kb

]{

u 2
u 3

}

(6.19)

InversionofthesecondofEqs.(6.19)givesu 2 andu 3 intermsofFx,2andFx,3.Substitutionofthese
valuesinthefirstequationthenyieldsFx,1.
Thus,
{
u 2
u 3


}

=

[

ka+kb −kb
−kb kb

]− 1 {

Fx,2
Fx,3

}

or
{
u 2
u 3


}

=

[

1 /ka 1 /ka
1 /ka 1 /kb+ 1 /ka

]{

Fx,2
Fx,3

}

Hence,


{Fx,1}=[−ka 0]

[

1 /ka 1 /ka
1 /ka 1 /kb+ 1 /ka

]{

Fx,2
Fx,3

}

whichgives


Fx,1=−Fx,2−Fx,3

aswouldbeexpectedfromequilibriumconsiderations.Inproblemswherereactionsarenotrequired,
equationsrelatingknownappliedforcestounknownnodaldisplacementsmaybeobtainedbydeleting
the rows and columns of [K] corresponding to zero displacements. This procedure eliminates the
necessityofrearrangingrowsandcolumnsintheoriginalstiffnessmatrixwhenthefixednodesarenot
convenientlygroupedtogether.
Finally,theinternalforcesinthespringsmaybedeterminedfromtheforce–displacementrelationship
ofeachspring.Thus,ifSaistheforceinthespringjoiningnodes1and2,then


Sa=ka(u 2 −u 1 )

Similarly,forthespringbetweennodes2and3


Sb=kb(u 3 −u 2 )
Free download pdf