176 CHAPTER 6 Matrix Methods
6.4 MatrixAnalysisofPin-jointedFrameworks......................................................
The formation of stiffness matrices for pin-jointed frameworks and the subsequent determination of
nodaldisplacementsfollowasimilarpatterntothatdescribedforaspringassembly.Amemberinsuch
aframeworkisassumedtobecapableofcarryingaxialforcesonlyandobeysauniqueforce–deformation
relationshipgivenby
F=
AE
L
δ
whereFistheforceinthemember,δitschangeinlength,Aitscross-sectionalarea,Litsunstrained
length,andEitsmodulusofelasticity.Thisexpressionisseentobeequivalenttothespring–displacement
relationshipsofEqs.(6.3)and(6.4)sothatwemayimmediatelywritedownthestiffnessmatrixfora
memberbyreplacingkbyAE/LinEq.(6.7).Thus,
[K]=
[
AE/L −AE/L
−AE/LAE/L
]
or
[K]=
AE
L
[
1 − 1
− 11
]
(6.20)
sothatforamemberalignedwiththexaxis,joiningnodesiandjsubjectedtonodalforcesFx,iand
Fx,j,wehave
{
Fx,i
Fx,j
}
=
AE
L
[
1 − 1
− 11
]{
ui
uj
}
(6.21)
Thesolutionproceedsinasimilarmannertothatgivenintheprevioussectionforaspringorspring
assembly.However,somemodificationisnecessary,sinceframeworksconsistofmemberssetatvarious
angles to one another. Figure 6.3 shows a member of a framework inclined at an angleθto a set of
Fig.6.3
Local and global coordinate systems for a member of a plane pin-jointed framework.