178 CHAPTER 6 Matrix Methods
where[T]isknownasthetransformationmatrix.Asimilarrelationshipexistsbetweenthesetsofnodal
displacements.Thus,againusingourshorthandnotation,
{δ ̄}=[T]{δ} (6.26)
Substitutingnowfor{F ̄}and{ ̄δ}inEq.(6.23)fromEqs.(6.25)and(6.26),wehave
[T]{F}=[Kij][T]{δ}
Hence,
{F}=[T−^1 ][Kij][T]{δ} (6.27)
Itmaybeshownthattheinverseofthetransformationmatrixisitstranspose:
[T−^1 ]=[T]T
Thus,werewriteEq.(6.27)as
{F}=[T]T[Kij][T]{δ} (6.28)
The nodal force system referred to global coordinates{F}is related to the corresponding nodal
displacementsby
{F}=[Kij]{δ} (6.29)
where[Kij]isthememberstiffnessmatrixreferredtoglobalcoordinates.ComparisonofEqs.(6.28)
and(6.29)showsthat
[Kij]=[T]T[Kij][T]
Substitutingfor[T]fromEq.(6.24)and[Kij]fromEq.(6.23),weobtain
[Kij]=
AE
L
⎡
⎢
⎢
⎣
λ^2 λμ −λ^2 −λμ
λμ μ^2 −λμ −μ^2
−λ^2 −λμ λ^2 λμ
−λμ −μ^2 λμ μ^2
⎤
⎥
⎥
⎦ (6.30)
Byevaluatingλ(=cosθ)andμ(=sinθ)foreachmemberandsubstitutinginEq.(6.30),weobtainthe
stiffnessmatrix,referredtoglobalcoordinates,foreachmemberoftheframework.
InSection6.3,wedeterminedtheinternalforceinaspringfromthenodaldisplacements.Applying
similarreasoningtotheframeworkmember,wemaywritedownanexpressionfortheinternalforce
Sijintermsofthelocalcoordinates.Thus,
Sij=
AE
L
(uj−ui) (6.31)
Now,
uj=λuj+μvj
ui=λui+μvi