10 CHAPTER 1 Basic Elasticity
Fig.1.
Stresses on the faces of an element at the boundary of a two-dimensional body.
which,bytakingthelimitasδxapproacheszero,becomes
X=σx
dy
ds
+τyx
dx
ds
Thederivativesdy/dsanddx/dsarethedirectioncosineslandmoftheanglesthatanormaltoAB
makeswiththexandyaxes,respectively.Itfollowsthat
X=σxl+τyxm
andinasimilarmanner,
Y=σym+τxyl
A relatively simple extension of this analysis produces the boundary conditions for a three-
dimensionalbody,namely
X=σxl+τyxm+τzxn
Y=σym+τxyl+τzyn
Z=σzn+τyzm+τxzl
⎫
⎪⎬
⎪⎭
(1.7)
wherel,m,andnbecomethedirectioncosinesoftheanglesthatanormaltothesurfaceofthebody
makeswiththex,y,andzaxes,respectively.
1.6 DeterminationofStressesonInclinedPlanes....................................................
ThecomplexstresssystemofFig.1.6isderivedfromaconsiderationoftheactualloadsappliedtoa
bodyandisreferredtoapredetermined,thougharbitrary,systemofaxes.Thevaluesofthesestresses
may not give a true picture of the severity of stress at that point, so it is necessary to investigate the