Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

182 CHAPTER 6 Matrix Methods


Ifwenowdeleterowsandcolumnsinthestiffnessmatrixcorrespondingtozerodisplacements,we
obtain the unknown nodal displacementsu 2 andv 2 in terms of the applied loadsFx,2(=0) andFy,2
(=−W).Thus,


{

Fx,2
Fy,2

}

=

AE

L





1 +

1

2


2


1

2


2


1

2


2

1

2


2





{

u 2
v 2

}

(v)

InvertingEq.(v)gives


{
u 2
v 2

}

=

L

AE

[

11

11 + 2


2

]{

Fx,2
Fy,2

}

(vi)

fromwhich


u 2 =

L

AE

(Fx,2+Fy,2)=−

WL

AE

(vii)

v 2 =

L

AE

[Fx,2+( 1 + 2


2 )Fy,2]=−

WL

AE

( 1 + 2


2 ) (viii)

The reactions at nodes 1 and 3 are now obtained by substituting foru 2 andv 2 from Eq. (vi) into
Eq.(iv).Thus,



⎪⎪

⎪⎨

⎪⎪

⎪⎩

Fx,1
Fy,1
Fx,3
Fy,3


⎪⎪

⎪⎬

⎪⎪

⎪⎭

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

− 10

00


1

2


2

1

2


2

1

2


2


1

2


2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

[

11

11 + 2


2

]{

Fx,2
Fy,2

}

=






− 1 − 1

00

01

0 − 1






{

Fx,2
Fy,2

}

giving


Fx,1=−Fx,2−Fy,2=W

Fy,1= 0

Fx,3=Fy,2=−W

Fy,3=W
Free download pdf