Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.6 Matrix Analysis of Space Frames 183

Finally,theforcesinthemembersarefoundfromEqs.(6.32),(vii),and(viii)


S 12 =

AE

L

[1 0]

{

u 2 −u 1
v 2 −v 1

}

=−W(compression)

S 13 =

AE

L

[0 1]

{

u 3 −u 1
v 3 −v 1

}

=0(asexpected)

S 23 =

AE


2 L

[


1


2

1


2

]{

u 3 −u 2
v 3 −v 2

}

=


2 W(tension)

6.5 ApplicationtoStaticallyIndeterminateFrameworks............................................


Thematrixmethodofsolutiondescribedintheprevioussectionsforspringandpin-jointedframework
assembliesiscompletelygeneralandisthereforeapplicabletoanystructuralproblem.Weobservethat
atnostageinExample6.1didthequestionofthedegreeofindeterminacyoftheframeworkarise.It
followsthatproblemsinvolvingstaticallyindeterminateframeworks(andotherstructures)aresolved
in an identical manner to that presented in Example 6.1, and the stiffness matrices for the redundant
membersbeingincludedinthecompletestiffnessmatrixasbefore.


6.6 MatrixAnalysisofSpaceFrames..................................................................


Theprocedureforthematrixanalysisofspaceframesissimilartothatforplanepin-jointedframeworks.
The main difference lies in the transformation of the member stiffness matrices from local to global
coordinates,since,asweseefromFig.6.5,axialnodalforcesFx,iandFx,jhaveeachnowthreeglobal


Fig.6.5


Local and global coordinate systems for a member in a pin-jointed space frame.

Free download pdf