6.6 Matrix Analysis of Space Frames 183
Finally,theforcesinthemembersarefoundfromEqs.(6.32),(vii),and(viii)
S 12 =
AE
L
[1 0]
{
u 2 −u 1
v 2 −v 1
}
=−W(compression)
S 13 =
AE
L
[0 1]
{
u 3 −u 1
v 3 −v 1
}
=0(asexpected)
S 23 =
AE
√
2 L
[
−
1
√
2
1
√
2
]{
u 3 −u 2
v 3 −v 2
}
=
√
2 W(tension)
6.5 ApplicationtoStaticallyIndeterminateFrameworks............................................
Thematrixmethodofsolutiondescribedintheprevioussectionsforspringandpin-jointedframework
assembliesiscompletelygeneralandisthereforeapplicabletoanystructuralproblem.Weobservethat
atnostageinExample6.1didthequestionofthedegreeofindeterminacyoftheframeworkarise.It
followsthatproblemsinvolvingstaticallyindeterminateframeworks(andotherstructures)aresolved
in an identical manner to that presented in Example 6.1, and the stiffness matrices for the redundant
membersbeingincludedinthecompletestiffnessmatrixasbefore.
6.6 MatrixAnalysisofSpaceFrames..................................................................
Theprocedureforthematrixanalysisofspaceframesissimilartothatforplanepin-jointedframeworks.
The main difference lies in the transformation of the member stiffness matrices from local to global
coordinates,since,asweseefromFig.6.5,axialnodalforcesFx,iandFx,jhaveeachnowthreeglobal
Fig.6.5
Local and global coordinate systems for a member in a pin-jointed space frame.