Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

184 CHAPTER 6 Matrix Methods


componentsFx,i,Fy,i,Fz,iandFx,j,Fy,j,Fz,j,respectively.Thememberstiffnessmatrixreferredtoglobal
coordinatesisthereforeoftheorder6×6sothat[Kij]ofEq.(6.22)mustbeexpandedtothesameorder
toallowforthis.Hence,


[Kij]=

AE

L

⎡u ̄i v ̄i w ̄i u ̄j ̄vjw ̄j
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

100 − 100

000 000

000 000

−100 100

000 000

000 000

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(6.33)

InFig.6.5,thememberijisoflengthL,cross-sectionalareaA,andmodulusofelasticityE.Global
andlocalcoordinatesystemsaredesignatedasforthetwo-dimensionalcase.Further,wesupposethat


θxx ̄=anglebetweenxandx ̄
θxy ̄=anglebetweenxandy ̄
..
.
θzy ̄=anglebetweenzand ̄y
..
.

Therefore,nodalforcesreferredtothetwosystemsofaxesarerelatedasfollows:


Fx=Fxcosθxx ̄+Fycosθx ̄y+Fzcosθx ̄z
Fy=Fxcosθy ̄x+Fycosθyy ̄+Fzcosθyz ̄
Fz=Fxcosθzx ̄+Fycosθzy ̄+Fzcosθz ̄z


⎪⎬

⎪⎭

(6.34)

Writing


λx ̄=cosθx ̄x, λ ̄y=cosθxy ̄, λz ̄=cosθxz ̄
μx ̄=cosθy ̄x, μ ̄y=cosθyy ̄, μz ̄=cosθyz ̄
ν ̄x=cosθz ̄x, νy ̄=cosθzy ̄, ν ̄z=cosθzz ̄


⎪⎬

⎪⎭

(6.35)

wemayexpressEq.(6.34)fornodesiandjinmatrixformas

⎪⎪
⎪⎪
⎪⎪
⎪⎪

⎪⎪
⎪⎪
⎪⎪
⎪⎪


Fx,i
Fy,i
Fz,i
Fx,j
Fy,j
Fz,j


⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

λ ̄x μ ̄x νx ̄ 000
λ ̄y μ ̄y νy ̄ 000
λ ̄z μ ̄z νz ̄ 000
000 λx ̄ μx ̄ ν ̄x
000 λ ̄y μy ̄ ν ̄y
000 λ ̄z μz ̄ ν ̄z

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦


⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


Fx,i
Fy,i
Fz,i
Fx,j
Fy,j
Fz,j


⎪⎪

⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪

⎪⎪


(6.36)
Free download pdf