Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

188 CHAPTER 6 Matrix Methods


wehave,fromEqs.(6.45)and(6.46),


[Kij]=EI

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

12 μ^2 /L^3 SYM
− 12 λμ/L^312 λ^2 /L^3
6 μ/L^2 − 6 λ/L^24 /L
− 12 μ^2 /L^312 λμ/L^3 − 6 μ/L^212 μ^2 /L^3
12 λμ/L^3 − 12 λ^2 /L^36 λ/L^2 − 12 λμ/L^312 λ^2 /L^3
6 μ/L^2 − 6 λ/L^22 /L 6 μ/L^26 λ/L^24 λ/L

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(6.47)

Again,thestiffnessmatrixforthecompletestructureisassembledfromthememberstiffnessmatrices,
theboundaryconditionsareapplied,andtheresultingsetofequationssolvedfortheunknownnodal
displacementsandforces.
Theinternalshearforcesandbendingmomentsinabeammaybeobtainedintermsofthecalculated
nodaldisplacements.Thus,forabeamjoiningnodesiandj,weshallhaveobtainedtheunknownvalues
ofvi,θiandvj,θj.ThenodalforcesFy,iandMiarethenobtainedfromEq.(6.44)ifthebeamisaligned
withthexaxis.Hence,


Fy,i=EI

(

12

L^3

vi−

6

L^2

θi−

12

L^3

vj−

6

L^2

θj

)

Mi=EI

(


6

L^2

vi+

4

L

θi+

6

L^2

vj+

2

L

θj

)


⎪⎪

⎪⎬

⎪⎪

⎪⎭

(6.48)

Similarexpressionsareobtainedfortheforcesatnodej.FromFig.6.6,weseethattheshearforceSy
andbendingmomentMinthebeamaregivenby


Sy=Fy,i
M=Fy,ix+Mi

}

(6.49)

SubstitutingEq.(6.48)intoEq.(6.49)andexpressinginmatrixformyield


{

Sy
M

}

=EI





12

L^3


6

L^2


12

L^3


6

L^2

12

L^3

x−

6

L^2


6

L^2

x+

4

L


12

L^3

x+

6

L^2


6

L^2

x+

2

L






⎪⎪


⎪⎪


vi
θi
vj
θj


⎪⎪


⎪⎪


(6.50)

The matrix analysis of the beam in Fig. 6.6 is based on the condition that no external forces are
applied between the nodes. Obviously, in a practical case, a beam supports a variety of loads along
itslength,andtherefore,suchbeamsmustbeidealizedintoanumberofbeamelementsforwhichthe
precedingconditionholds.Theidealizationisaccomplishedbymerelyspecifyingnodesatpointsalong
the beam such that any element lying between adjacent nodes carries, at the most, a uniform shear
and a linearly varying bending moment. For example, the beam of Fig. 6.7 would be idealized into
beamelements1–2,2–3,and3–4forwhichtheunknownnodaldisplacementsarev 2 ,θ 2 ,θ 3 ,v 4 ,andθ 4
(v 1 =θ 1 =v 3 =0).

Free download pdf