1.6 Determination of Stresses on Inclined Planes 11
Fig.1.
(a) Stresses on a two-dimensional element; (b) stresses on an inclined plane at the point.
stateofstressonotherplanesonwhichthedirectandshearstressesmaybegreater.Weshallrestrict
theanalysistothetwo-dimensionalsystemofplanestressdefinedinSection1.4.
Figure 1.8(a) shows a complex stress system at a point in a body referred to axes Ox,Oy.All
stressesarepositiveasdefinedinSection1.2.Theshearstressesτxyandτyxwereshowntobeequalin
Section1.3.Wenow,therefore,designatethembothτxy.Theelementofsideδx,δyandofunitthickness
issmall,sostressdistributionsoverthesidesoftheelementmaybeassumedtobeuniform.Bodyforces
areignored,sincetheircontributionisasecond-orderterm.
SupposethatwewanttofindthestateofstressonaplaneABinclinedatanangleθtothevertical.
ThetriangularelementEDCformedbytheplaneandtheverticalthroughEisinequilibriumunderthe
actionoftheforcescorrespondingtothestressesshowninFig.1.8(b),whereσnandτarethedirect
andshearcomponentsoftheresultantstressonAB.Then,resolvingforcesinadirectionperpendicular
toED,wehave
σnED=σxECcosθ+σyCDsinθ+τxyECsinθ+τxyCDcosθ
DividingbyEDandsimplifying
σn=σxcos^2 θ+σysin^2 θ+τxysin2θ (1.8)
NowresolvingforcesparalleltoED,
τED=σxECsinθ−σyCDcosθ−τxyECcosθ+τxyCDsinθ
AgaindividingbyEDandsimplifying,
τ=
(σx−σy)
2
sin2θ−τxycos2θ (1.9)