192 CHAPTER 6 Matrix Methods
SubstitutingEq.(v)intoEq.(iii),weobtain
{
v 2
θ 2 L
}
=
L^3
9 EI
[
− 4 − 2
− 23
]{
−W
M/L
}
(vi)
fromwhichtheunknowndisplacementsatnode2are
v 2 =−
4
9
WL^3
EI
−
2
9
ML^2
EI
θ 2 =
2
9
WL^2
EI
+
1
3
ML
EI
Inaddition,fromEq.(v)wefindthat
θ 1 =
5
9
WL^2
EI
+
1
6
ML
EI
θ 3 =−
4
9
WL^2
EI
−
1
3
ML
EI
Itshouldbenotedthatthesolutionhasbeenobtainedbyinvertingtwo2×2matricesratherthanthe
4 ×4matrixofEq.(ii).ThissimplificationhasbeenbroughtaboutbythefactthatM 1 =M 3 =0.
TheinternalshearforcesandbendingmomentscannowbefoundusingEq.(6.50).Forthebeam
element1–2,wehave
Sy,12=EI
(
12
L^3
v 1 −
6
L^2
θ 1 −
12
L^3
v 2 −
6
L^2
θ 2
)
or
Sy,12=
2
3
W−
1
3
M
L
and
M 12 =EI
[(
12
L^3
x−
6
L^2
)
v 1 +
(
−
6
L^2
x+
4
L
)
θ 1
+
(
−
12
L^3
x+
6
L^2
)
v 2 +
(
−
6
L^2
x+
2
L
)
θ 2
]
whichreducesto
M 12 =
(
2
3
W−
1
3
M
L
)
x