Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

192 CHAPTER 6 Matrix Methods


SubstitutingEq.(v)intoEq.(iii),weobtain


{
v 2
θ 2 L

}

=

L^3

9 EI

[

− 4 − 2

− 23

]{

−W

M/L

}

(vi)

fromwhichtheunknowndisplacementsatnode2are


v 2 =−

4

9

WL^3

EI


2

9

ML^2

EI

θ 2 =

2

9

WL^2

EI

+

1

3

ML

EI

Inaddition,fromEq.(v)wefindthat


θ 1 =

5

9

WL^2

EI

+

1

6

ML

EI

θ 3 =−

4

9

WL^2

EI


1

3

ML

EI

Itshouldbenotedthatthesolutionhasbeenobtainedbyinvertingtwo2×2matricesratherthanthe
4 ×4matrixofEq.(ii).ThissimplificationhasbeenbroughtaboutbythefactthatM 1 =M 3 =0.
TheinternalshearforcesandbendingmomentscannowbefoundusingEq.(6.50).Forthebeam
element1–2,wehave


Sy,12=EI

(

12

L^3

v 1 −

6

L^2

θ 1 −

12

L^3

v 2 −

6

L^2

θ 2

)

or


Sy,12=

2

3

W−

1

3

M

L

and


M 12 =EI

[(

12

L^3

x−

6

L^2

)

v 1 +

(


6

L^2

x+

4

L

)

θ 1

+

(


12

L^3

x+

6

L^2

)

v 2 +

(


6

L^2

x+

2

L

)

θ 2

]

whichreducesto


M 12 =

(

2

3

W−

1

3

M

L

)

x
Free download pdf