196 CHAPTER 6 Matrix Methods
whichwewriteas
{ε}=[C]{α} (6.65)
Substitutingfor{α}inEq.(6.65)fromEq.(6.60),wehave
{ε}=[C][A−^1 ]{δe} (6.66)
Stepfiverelatestheinternalstressesintheelementtothestrain{ε}andhence,usingEq.(6.66),to
thenodaldisplacements{δe}.Inourbeamelement,thestressdistributionatanysectiondependsentirely
onthevalueofthebendingmomentMatthatsection.Thus,wemayrepresenta“stateofstress”{σ}
atanysectionbythebendingmomentM,which,fromsimplebeamtheory,isgivenby
M=EI
∂^2 v
∂x^2
or
{σ}=[EI]{ε} (6.67)
whichwewriteas
{σ}=[D]{ε} (6.68)
Thematrix[D]inEq.(6.68)isthe“elasticity”matrixrelating“stress”and“strain.”Inthiscase,[D]
consists of a single term, the flexural rigidityEIof the beam. Generally, however, [D] is of a higher
order.Ifwenowsubstitutefor{ε}inEq.(6.68)fromEq.(6.66),weobtainthe“stress”intermsofthe
nodaldisplacements,thatis,
{σ}=[D][C][A−^1 ]{δe} (6.69)
Theelementstiffnessmatrixisfinallyobtainedinstepsixinwhichwereplacetheinternal“stresses”
{σ}byastaticallyequivalentnodalloadsystem{Fe},therebyrelatingnodalloadstonodaldisplacements
(fromEq.(6.69))anddefiningtheelementstiffnessmatrix[Ke].Thisisachievedbyusingtheprinciple
ofthestationaryvalueofthetotalpotentialenergyofthebeam(seeSection5.8)whichcomprisesthe
internalstrainenergyUandthepotentialenergyVofthenodalloads.Thus,
U+V=
1
2
∫
vol
{ε}T{σ}d(vol)−{δe}T{Fe} (6.70)
SubstitutinginEq.(6.70)for{ε}fromEq.(6.66)and{σ}fromEq.(6.69),wehave
U+V=
1
2
∫
vol
{δe}T[A−^1 ]T[C]T[D][C][A−^1 ]{δe}d(vol)−{δe}T{Fe} (6.71)