Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.8 Finite Element Method for Continuum Structures 201

FromEqs.(1.18)and(1.20),weseethat


εx=

∂u
∂x

εy=

∂v
∂y

γxy=

∂u
∂y

+

∂v
∂x

(6.88)

SubstitutingforuandvinEqs.(6.88)fromEqs.(6.82)gives


εx=α 2
εy=α 6
γxy=α 3 +α 5

orinmatrixform


{ε}=



010000

000001

001010




⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪⎪

⎪⎩

α 1
α 2
α 3
α 4
α 5
α 6


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪⎪

⎪⎭

(6.89)

whichisoftheform


{ε}=[C]{α} (seeEqs.(6.64)and(6.65))

Substitutingfor{α}(=[A−^1 ]{δe})weobtain


{ε}=[C][A−^1 ]{δe} (comparewithEq.(6.66))

or


{ε}=[B]{δe} (seeEq.(6.76))

where[C]isdefinedinEq.(6.89).
In step five, we relate the internal stresses{σ}to the strain{ε}and hence, using step four, to the
nodaldisplacements{δe}.Forplanestressproblems,


{σ}=




σx
σy
τxy




(6.90)

and


εx =

σx
E


νσy
E
εy =

σy
E


νσx
E

γxy=

τxy
G

=

2 ( 1 +ν)
E

τxy


⎪⎪

⎪⎪

⎪⎬

⎪⎪

⎪⎪

⎪⎭

(seeChapter1)
Free download pdf