6.8 Finite Element Method for Continuum Structures 201
FromEqs.(1.18)and(1.20),weseethat
εx=
∂u
∂x
εy=
∂v
∂y
γxy=
∂u
∂y
+
∂v
∂x
(6.88)
SubstitutingforuandvinEqs.(6.88)fromEqs.(6.82)gives
εx=α 2
εy=α 6
γxy=α 3 +α 5
orinmatrixform
{ε}=
⎡
⎣
010000
000001
001010
⎤
⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪⎪
⎪⎩
α 1
α 2
α 3
α 4
α 5
α 6
⎫
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪⎪
⎪⎭
(6.89)
whichisoftheform
{ε}=[C]{α} (seeEqs.(6.64)and(6.65))
Substitutingfor{α}(=[A−^1 ]{δe})weobtain
{ε}=[C][A−^1 ]{δe} (comparewithEq.(6.66))
or
{ε}=[B]{δe} (seeEq.(6.76))
where[C]isdefinedinEq.(6.89).
In step five, we relate the internal stresses{σ}to the strain{ε}and hence, using step four, to the
nodaldisplacements{δe}.Forplanestressproblems,
{σ}=
⎧
⎨
⎩
σx
σy
τxy
⎫
⎬
⎭
(6.90)
and
εx =
σx
E
−
νσy
E
εy =
σy
E
−
νσx
E
γxy=
τxy
G
=
2 ( 1 +ν)
E
τxy
⎫
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎭
(seeChapter1)