204 CHAPTER 6 Matrix Methods
thatis,
u 3 =α 1 + 2 α 2 + 2 α 3 (iii)
FromEq.(i),
α 1 =u 1 (iv)
andfromEqs.(ii)and(iv),
α 2 =
u 2 −u 1
4
(v)
Then,fromEqs.(iii)to(v),
α 3 =
2 u 3 −u 1 −u 2
4
(vi)
Substitutingforα 1 ,α 2 ,andα 3 inthefirstofEqs.(6.82)gives
u=u 1 +
(
u 2 −u 1
4
)
x+
(
2 u 3 −u 1 −u 2
4
)
y
or
u=
(
1 −
x
4
−
y
4
)
u 1 +
(x
4
−
y
4
)
u 2 +
y
2
u 3 (vii)
Similarly,
v=
(
1 −
x
4
−
y
4
)
v 1 +
(x
4
−
y
4
)
v 2 +
y
2
v 3 (viii)
NowfromEq.(6.88),
εx=
∂u
∂x
=−
u 1
4
+
u 2
4
εy=
∂v
∂y
=−
v 1
4
−
v 2
4
+
v 3
2
and
γxy=
∂u
∂y
+
∂v
∂x
=−
u 1
4
−
u 2
4
−
v 1
4
+
v 2
4
Hence,
[B]{δe}=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
∂u
∂x
∂v
∂y
∂u
∂y
+
∂v
∂x
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
=
1
4
⎡
⎣
− 101000
0 − 10 − 102
− 1 − 1 − 1120
⎤
⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎩
u 1
v 1
u 2
v 2
u 3
v 3
⎫
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎭
(ix)