Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

204 CHAPTER 6 Matrix Methods


thatis,


u 3 =α 1 + 2 α 2 + 2 α 3 (iii)

FromEq.(i),


α 1 =u 1 (iv)

andfromEqs.(ii)and(iv),


α 2 =

u 2 −u 1
4

(v)

Then,fromEqs.(iii)to(v),


α 3 =

2 u 3 −u 1 −u 2
4

(vi)

Substitutingforα 1 ,α 2 ,andα 3 inthefirstofEqs.(6.82)gives

u=u 1 +

(

u 2 −u 1
4

)

x+

(

2 u 3 −u 1 −u 2
4

)

y

or


u=

(

1 −

x
4


y
4

)

u 1 +

(x

4


y
4

)

u 2 +

y
2

u 3 (vii)

Similarly,


v=

(

1 −

x
4


y
4

)

v 1 +

(x
4


y
4

)

v 2 +

y
2

v 3 (viii)

NowfromEq.(6.88),


εx=

∂u
∂x

=−

u 1
4

+

u 2
4

εy=

∂v
∂y

=−

v 1
4


v 2
4

+

v 3
2

and


γxy=

∂u
∂y

+

∂v
∂x

=−

u 1
4


u 2
4


v 1
4

+

v 2
4

Hence,


[B]{δe}=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

∂u
∂x
∂v
∂y
∂u
∂y

+

∂v
∂x

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

=

1

4



− 101000

0 − 10 − 102

− 1 − 1 − 1120




⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


u 1
v 1
u 2
v 2
u 3
v 3


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


(ix)
Free download pdf