204 CHAPTER 6 Matrix Methods
thatis,
u 3 =α 1 + 2 α 2 + 2 α 3 (iii)FromEq.(i),
α 1 =u 1 (iv)andfromEqs.(ii)and(iv),
α 2 =u 2 −u 1
4(v)Then,fromEqs.(iii)to(v),
α 3 =2 u 3 −u 1 −u 2
4(vi)Substitutingforα 1 ,α 2 ,andα 3 inthefirstofEqs.(6.82)givesu=u 1 +(
u 2 −u 1
4)
x+(
2 u 3 −u 1 −u 2
4)
yor
u=(
1 −
x
4−
y
4)
u 1 +(x4−
y
4)
u 2 +y
2u 3 (vii)Similarly,
v=(
1 −
x
4−
y
4)
v 1 +(x
4−
y
4)
v 2 +y
2v 3 (viii)NowfromEq.(6.88),
εx=∂u
∂x=−
u 1
4+
u 2
4εy=∂v
∂y=−
v 1
4−
v 2
4+
v 3
2and
γxy=∂u
∂y+
∂v
∂x=−
u 1
4−
u 2
4−
v 1
4+
v 2
4Hence,
[B]{δe}=⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
∂u
∂x
∂v
∂y
∂u
∂y+
∂v
∂x⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
=
1
4
⎡
⎣
− 101000
0 − 10 − 102
− 1 − 1 − 1120
⎤
⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎩
u 1
v 1
u 2
v 2
u 3
v 3⎫
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎭
(ix)