6.8 Finite Element Method for Continuum Structures 207
or
{
u(x,y)
v(x,y)
}
=[f(x,y)]{α} (6.98)
Now,substitutingthecoordinatesandvaluesofdisplacementateachnode,weobtain
⎧
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎩
ui
vi
uj
vj
uk
vk
ul
vl
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭
=
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
1 xi yi xiyi 0000
0000 1xi yi xiyi
1 xj yj xjyj 0000
0000 1xj yj xjyj
1 xk yk xkyk 0000
0000 1xk yk xkyk
1 xl yl xlyl 0000
0000 1xl yl xlyl
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎩
α 1
α 2
α 3
α 4
α 5
α 6
α 7
α 8
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭
(6.99)
whichisoftheform
{δe}=[A]{α}
Then,
{α}=[A−^1 ]{δe} (6.100)
Theinversionof[A]isillustratedinExample6.4but,asinthecaseofthetriangularelement,ismost
easilycarriedoutbymeansofacomputer.Theremaininganalysisisidenticaltothatforthetriangular
elementexceptthatthe{ε}–{α}relationship(seeEq.(6.89))becomes
{ε}=
⎡
⎣
010 y 0000
0000001 x
001 x 010 y
⎤
⎦
⎧
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎩
α 1
α 2
α 3
α 4
α 5
α 6
α 7
α 8
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭
(6.101)
Example 6.4
Arectangularelementusedinaplanestressanalysishascornerswhosecoordinates(inmeters),referred
toanOxyaxessystem,are1(−2,−1),2(2,−1),3(2,1),and4(−2,1);thedisplacements(alsoinmeters)
ofthecornerswere
u 1 =0.001, u 2 =0.003, u 3 =−0.003, u 4 = 0
v 1 =−0.004, v 2 =−0.002, v 3 =0.001, v 4 =0.001