Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
6.8 Finite Element Method for Continuum Structures 209

Now,substitutingforα 1 ,α 2 ,...,α 8 inEqs.(6.96),


ui=0.00025−0.000125x−0.00175y−0.000625xy

and


vi=−0.001+0.00025x+0.002y−0.00025xy

Then,fromEqs.(6.88),


εx=

∂u
∂x

=−0.000125−0.000625y

εy=
∂v
∂y

=0.002−0.00025x

γxy=

∂u
∂y

+

∂v
∂x

=−0.0015−0.000625x−0.00025y

Therefore,atthecenteroftheelement(x=0,y= 0 ),


εx=−0.000125
εy=0.002
γxy=−0.0015

sothatfromEqs.(6.92),


σx=

E

1 −ν^2

(εx+νεy)=

200000

1 −0.3^2

(−0.000125+(0.3×0.002))

thatis,


σx=104.4N/mm^2

σy=

E

1 −ν^2

(εy+νεx)=

200000

1 −0.3^2

(0.002+(0.3×0.000125))

thatis,


σy=431.3N/mm^2

and


τxy=

E

1 −ν^2

×

1

2

( 1 −ν)γxy=

E

2 ( 1 +ν)

γxy

Thus,


τxy=

200000

2 ( 1 +0.3)

×(−0.0015)
Free download pdf