7.2Plates Subjected to Bending and Twisting 225
for whichMt=0, leaving normal moments of intensityMnon two mutually perpendicular planes.
Thesemomentsaretermedprincipalmoments,andtheircorrespondingcurvaturesarecalledprincipal
curvatures.ForaplatesubjectedtopurebendingandtwistinginwhichMx,My,andMxyareinvariable
throughouttheplate,theprincipalmomentsarethealgebraicallygreatestandleastmomentsintheplate.
Itfollowsthattherearenoshearstressesontheseplanesandthatthecorrespondingdirectstresses,for
agivenvalueofzandmomentintensity,arethealgebraicallygreatestandleastvaluesofdirectstress
intheplate.
Let us now return to theloaded plateof Fig. 7.5(a). Wehaveestablished, in Eqs. (7.7) and (7.8),
therelationshipsbetweenthebendingmomentintensitiesMxandMyandthedeflectionwoftheplate.
ThenextstepistorelatethetwistingmomentMxytow.Fromtheprincipleofsuperposition,wemay
considerMxyactingseparatelyfromMxandMy.Asstatedpreviously,Mxyisresistedbyasystemof
horizontalcomplementaryshearstressesontheverticalfacesofsectionstakenthroughoutthethickness
oftheplateparalleltothexandyaxes.Consideranelementoftheplateformedbysuchsections,as
shown in Fig. 7.6. The complementary shear stresses on a lamina of the element a distancezbelow
theneutralplaneare,inaccordancewiththesignconventionofSection1.2,τxy.Therefore,ontheface
ABCD
Mxyδy=−
∫t/^2
−t/ 2
τxyδyzdz
andonthefaceADFE
Mxyδx=−
∫t/^2
−t/ 2
τxyδxzdz
giving
Mxy=−
∫t/^2
−t/ 2
τxyzdz
orintermsoftheshearstrainγxyandmodulusofrigidityG
Mxy=−G
∫t/^2
−t/ 2
γxyzdz (7.12)
ReferringtoEqs.(1.20),theshearstrainγxyisgivenby
γxy=
∂v
∂x
+
∂u
∂y
Werequire,ofcourse,toexpressγxyintermsofthedeflectionwoftheplate;thismaybeaccomplished
asfollows.Anelementtakenthroughthethicknessoftheplatewillsufferrotationsequalto∂w/∂xand