242 CHAPTER 7 Bending of Thin Plates
Fig.7.14
(a) Strain energy of element due to bending; (b) strain energy due to twisting.
weareonlyneglectingthecontributionsofshearanddirectstrainsonthedeflectionoftheplate;the
stressesproducingthemmustnotbeignored.
Considertheelementδx×δyofathinplatea×bshowninelevationinthexzplaneinFig.7.14(a).
BendingmomentsMxperunitlengthappliedtoitsδyedgeproduceachangeinslopebetweenitsends
equalto(∂^2 w/∂x^2 )δx.However,sinceweregardthemomentsMxaspositiveinthesenseshown,then
thischangeinslope,orrelativerotation,oftheendsoftheelementisnegativeastheslopedecreases
withincreasingx.ThebendingstrainenergyduetoMxisthen
1
2
Mxδy
(
−
∂^2 w
∂x^2
δx
)
Similarly,intheyzplanethecontributionofMytothebendingstrainenergyis
1
2
Myδx
(
−
∂^2 w
∂y^2
δy
)
The strain energy due to the twisting moment per unit length,Mxy,appliedtotheδyedges of the
element,isobtainedfromFig.7.14(b).Therelativerotationoftheδyedgesis(∂^2 w/∂x∂y)δxsothatthe
correspondingstrainenergyis
1
2
Mxyδy
∂^2 w
∂x∂y
δx
Finally,thecontributionofthetwistingmomentMxyontheδxedgesis,inasimilarfashion,
1
2
Mxyδx
∂^2 w
∂x∂y
δy