7.6 Energy Method for the Bending of Thin Plates 243Thetotalstrainenergyoftheelementfrombendingandtwistingisthus
1
2(
−Mx∂^2 w
∂x^2−My∂^2 w
∂y^2+ 2 Mxy∂^2 w
∂x∂y)
δxδySubstitutionforMx,My,andMxyfromEqs.(7.7),(7.8),and(7.14)givesthetotalstrainenergyofthe
elementas
D
2[(
∂^2 w
∂x^2) 2
+
(
∂^2 w
∂y^2) 2
+ 2 ν∂^2 w
∂x^2∂^2 w
∂y^2+ 2 ( 1 −ν)(
∂^2 w
∂x∂y) 2 ]
δxδywhichonrearrangingbecomes
D
2
{(
∂^2 w
∂x^2+
∂^2 w
∂y^2) 2
− 2 ( 1 −ν)[
∂^2 w
∂x^2∂^2 w
∂y^2−
(
∂^2 w
∂x∂y) 2 ]}
δxδyHence,thetotalstrainenergyUoftherectangularplatea×bis
U=
D
2
∫a0∫b0{(
∂^2 w
∂x^2+
∂^2 w
∂y^2) 2
− 2 ( 1 −ν)[
∂^2 w
∂x^2∂^2 w
∂y^2−
(
∂^2 w
∂x∂y) 2 ]}
dxdy (7.37)Notethatiftheplateissubjecttopurebendingonly,thenMxy=0,andfromEq.(7.14)∂^2 w/∂x∂y=0,
sothatEq.(7.37)simplifiesto
U=
D
2
∫a0∫b0[(
∂^2 w
∂x^2) 2
+
(
∂^2 w
∂y^2) 2
+ 2 ν∂^2 w
∂x^2∂^2 w
∂y^2]
dxdy (7.38)7.6.2 Potential Energy of a Transverse Load
Anelementδx×δyofthetransverselyloadedplateofFig.7.8supportsaloadqδxδy.Ifthedisplacement
oftheelementnormaltotheplateisw,thenthepotentialenergyδVoftheloadontheelementreferred
totheundeflectedplatepositionis
δV=−wqδxδy SeeSection5.7Therefore,thepotentialenergyVofthetotalloadontheplateisgivenby
V=−
∫a0∫b0wqdxdy (7.39)