7.6 Energy Method for the Bending of Thin Plates 243
Thetotalstrainenergyoftheelementfrombendingandtwistingisthus
1
2
(
−Mx
∂^2 w
∂x^2
−My
∂^2 w
∂y^2
+ 2 Mxy
∂^2 w
∂x∂y
)
δxδy
SubstitutionforMx,My,andMxyfromEqs.(7.7),(7.8),and(7.14)givesthetotalstrainenergyofthe
elementas
D
2
[(
∂^2 w
∂x^2
) 2
+
(
∂^2 w
∂y^2
) 2
+ 2 ν
∂^2 w
∂x^2
∂^2 w
∂y^2
+ 2 ( 1 −ν)
(
∂^2 w
∂x∂y
) 2 ]
δxδy
whichonrearrangingbecomes
D
2
{(
∂^2 w
∂x^2
+
∂^2 w
∂y^2
) 2
− 2 ( 1 −ν)
[
∂^2 w
∂x^2
∂^2 w
∂y^2
−
(
∂^2 w
∂x∂y
) 2 ]}
δxδy
Hence,thetotalstrainenergyUoftherectangularplatea×bis
U=
D
2
∫a
0
∫b
0
{(
∂^2 w
∂x^2
+
∂^2 w
∂y^2
) 2
− 2 ( 1 −ν)
[
∂^2 w
∂x^2
∂^2 w
∂y^2
−
(
∂^2 w
∂x∂y
) 2 ]}
dxdy (7.37)
Notethatiftheplateissubjecttopurebendingonly,thenMxy=0,andfromEq.(7.14)∂^2 w/∂x∂y=0,
sothatEq.(7.37)simplifiesto
U=
D
2
∫a
0
∫b
0
[(
∂^2 w
∂x^2
) 2
+
(
∂^2 w
∂y^2
) 2
+ 2 ν
∂^2 w
∂x^2
∂^2 w
∂y^2
]
dxdy (7.38)
7.6.2 Potential Energy of a Transverse Load
Anelementδx×δyofthetransverselyloadedplateofFig.7.8supportsaloadqδxδy.Ifthedisplacement
oftheelementnormaltotheplateisw,thenthepotentialenergyδVoftheloadontheelementreferred
totheundeflectedplatepositionis
δV=−wqδxδy SeeSection5.7
Therefore,thepotentialenergyVofthetotalloadontheplateisgivenby
V=−
∫a
0
∫b
0
wqdxdy (7.39)