Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
Problems 251

whereDistheflexuralrigidity,νisPoisson’sratio,andAisaconstant. CalculatethevalueofAandhencethe
centraldeflectionoftheplate.


Ans. A=a^4 ( 5 − 3 ν)/4,Cen.def.=qa^4 ( 5 − 3 ν)/ 384 D( 1 −ν)

P.7.6 Thedeflectionofasquareplateofsidea,whichsupportsalateralloadrepresentedbythefunctionq(x,y)
isgivenby


w(x,y)=w 0 cos
πx
a
cos
3 πy
a
,

wherexandyarereferredtoaxeswhoseorigincoincideswiththecenteroftheplateandw 0 isthedeflectionatthe
center.
IftheflexuralrigidityoftheplateisDandPoisson’sratioisν,determinetheloadingfunctionq,thesupport
conditionsoftheplate,thereactionsattheplatecorners,andthebendingmomentsatthecenteroftheplate.


Ans. q(x,y)=w 0 D 100
π^4
a^4

cos
πx
a
cos
3 πy
a
Theplateissimplysupportedonalledges.
Reactions:− 6 w 0 D


a

) 2
( 1 −ν)

Mx=w 0 D


a

) 2
( 1 + 9 ν),My=w 0 D


a

) 2
( 9 +ν).

P.7.7 Asimplysupportedsquareplatea×acarriesadistributedloadaccordingtotheformula


q(x,y)=q 0

x
a
,

whereq 0 isitsintensityattheedgex=a.Determinethedeflectedshapeoftheplate.


Ans. w=
8 q 0 a^4
π^6 D

∑∞

m=1,2,3

∑∞

n=1,3,5

(− 1 )m+^1
mn(m^2 +n^2 )^2

sin
mπx
a

sin
nπy
a

P.7.8 Anellipticplateofmajorandminoraxes2aand2bandofsmallthicknesstisclampedalongitsboundary
andissubjectedtoauniformpressuredifferencepbetweenthetwofaces.Showthattheusualdifferentialequation
fornormaldisplacementsofathinflatplatesubjecttolateralloadingissatisfiedbythesolution


w=w 0

(
1 −
x^2
a^2


y^2
b^2

) 2
,

wherew 0 isthedeflectionatthecenterwhichistakenastheorigin.
Determinew 0 in terms ofpand the relevant material properties of the plate and hence expressions for the
greateststressesduetobendingatthecenterandattheendsoftheminoraxis.


Ans. w 0 =

3 p( 1 −ν^2 )

2 Et^3

(
3
a^4
+
2
a^2 b^2
+
3
b^4

)

Center, σx,max=
± 3 pa^2 b^2 (b^2 +νa^2 )
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )

, σy,max=
± 3 pa^2 b^2 (a^2 +νb^2 )
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )
Free download pdf