8.1 Euler Buckling of Columns 255
sothatthedifferentialequationofbendingofthecolumnis
d^2 v
dz^2
+
PCR
EI
v= 0 (8.2)
Thewell-knownsolutionofEq.(8.2)is
v=Acosμz+Bsinμz (8.3)
whereμ^2 =PCR/EIandAandBareunknownconstants.Theboundaryconditionsforthisparticular
casearev=0atz=0andl.Thus,A=0and
Bsinμl= 0
Foranontrivialsolution(i.e.,v
=0),then
sinμl=0orμl=nπ wheren=1,2,3,...
giving
PCRl^2
EI
=n^2 π^2
or
PCR=
n^2 π^2 EI
l^2
(8.4)
NotethatEq.(8.3)cannotbesolvedforvnomatterhowmanyoftheavailableboundaryconditionsare
inserted.Thisistobeexpected,sincetheneutralstateofequilibriummeansthatvisindeterminate.
Thesmallestvalueofbucklingload—inotherwords,thesmallestvalueofPwhichcanmaintain
thecolumninaneutralequilibriumstate—isobtainedbysubstitutingn=1inEq.(8.4).Hence,
PCR=
π^2 EI
l^2
(8.5)
OthervaluesofPCRcorrespondington=2,3,...,are
PCR=
4 π^2 EI
l^2
,
9 π^2 EI
l^2
,...
Thesehighervaluesofbucklingloadcausemorecomplexmodesofbucklingsuchasthoseshownin
Fig.8.3.Thedifferentshapesmaybeproducedbyapplyingexternalrestraintstoaveryslendercolumn
atthepointsofcontraflexuretopreventlateralmovement.Ifnorestraintsareprovided,thentheseforms
ofbucklingareunstableandhavelittlepracticalmeaning.
Thecriticalstress,σCR,correspondingtoPCR,is,fromEq.(8.5)
σCR=
π^2 E
(l/r)^2
, (8.6)
whereristheradiusofgyrationofthecross-sectionalareaofthecolumn.Theterml/risknownasthe
slendernessratioofthecolumn.Foracolumnthatisnotdoublysymmetrical,ristheleastradiusof