18 CHAPTER 1 Basic Elasticity
Hence,
σn=
σx+σy
2
+
(
σx−σy
2
)
cos2θ+CP 1 tanβsin2θ
which,onrearranging,becomes
σn=σxcos^2 θ+σysin^2 θ+τxysin2θ
asinEq.(1.8).Similarly,itmaybeshownthat
Q′N=τxycos2θ−
(
σx−σy
2
)
sin2θ=−τ
asinEq.(1.9).NotethattheconstructionofFig.1.12(b)correspondstothestresssystemofFig.1.12(a)
so that any sign reversal must be allowed for. Also, the Oσand Oτaxes must be constructed to the
samescale,ortheequationofthecircleisnotrepresented.
The maximum and minimum values of the direct stress—that is, the major and minor principal
stressesσIandσII—occurwhenNandQ′coincidewithBandA,respectively.Thus,
σ 1 =OC+radiusofcircle
=
(σx+σy)
2
+
√
CP^21 +P 1 Q^21
or
σI=
(σx+σy)
2
+
1
2
√
(σx−σy)^2 + 4 τxy^2
andinthesamefashion
σII=
(σx+σy)
2
−
1
2
√
(σx−σy)^2 + 4 τxy^2
Theprincipalplanesarethengivenby2θ=β(σI)and2θ=β+π(σII).
AlsothemaximumandminimumvaluesofshearstressoccurwhenQ′coincideswithDandEat
theupperandlowerextremitiesofthecircle.
Atthesepoints,Q′Nisequaltotheradiusofthecirclewhichisgivenby
CQ 1 =
√
(σx−σy)^2
4
+τxy^2
Henceτmax,min=±^12
√
(σx−σy)^2 + 4 τxy^2 asbefore.Theplanesofmaximumandminimumshearstresses
aregivenby2θ=β+π/2and2θ=β+ 3 π/2,thesebeinginclinedat45◦totheprincipalplanes.
Example 1.3
Directstressesof160N/mm^2 (tension)and120N/mm^2 (compression)areappliedataparticularpointin
anelasticmaterialontwomutuallyperpendicularplanes.Theprincipalstressinthematerialislimited