8.6 Flexural–Torsional Buckling of Thin-Walled Columns 281
thatis,
I 0 =3.52× 105 +0.22× 105 =3.74× 105 mm^4
ThetorsionconstantJisobtainedusingEq.(18.11)whichgives
J= 2 ×37.5×2.5^3 / 3 + 75 ×2.5^3 / 3 =781.3mm^4
Finally,isfoundtobe (seeRef.3)
=2.5×37.5^3 × 752 / 24 =30.9× 106 mm^6
SubstitutingtheprecedingvaluesinEqs.(8.77),weobtain
PCR(xx)=6.5× 104 N PCR(yy)=0.41× 104 N PCR(θ)=2.22× 104 N
The column will, therefore, buckle in bending about the Cyaxis when subjected to an axial load of
0.41× 104 N.
Equation(8.73)forthecolumnwhosebuckledshapeisdefinedbyEqs.(8.71)mayberewrittenin
termsofthethreeseparatebucklingloadsgivenbyEqs.(8.77).Thus,
∣ ∣ ∣ ∣ ∣ ∣
0 P−PCR(xx) −PxS
P−PCR(yy) 0 PyS
PyS −PxS I 0 (P−PCR(θ ))/A
∣ ∣ ∣ ∣ ∣ ∣
= 0 (8.78)
Ifthecolumnhas,say,Cxasanaxisofsymmetry,thentheshearcenterliesonthisaxis,andyS=0.
Equation(8.78)therebyreducesto
∣
∣
∣
∣
P−PCR(xx) −PxS
−PxS I 0 (P−PCR(θ ))/A
∣
∣
∣
∣=^0 (8.79)
TherootsofthequadraticequationformedbyexpandingEq.(8.79)arethevaluesofaxialload,which
willproduceflexural–torsionalbucklingaboutthelongitudinalandxaxes.IfPCR(yy)islessthanthe
smallestoftheseroots,thecolumnwillbuckleinpurebendingabouttheyaxis.
Example 8.4
Acolumnoflength1mhasthecrosssectionshowninFig.8.18.Iftheendsofthecolumnarepinned
andfreetowarp,calculateitsbucklingload;E=70000N/mm^2 ,G=30000N/mm^2.
Inthiscase,theshearcenterSispositionedontheCxaxissothatyS=0andEq.(8.79)applies.The
distancex ̄ofthecentroidofareaCfromthewebofthesectionisfoundbytakingfirstmomentsofarea
abouttheweb.Thus,
2 ( 100 + 100 + 100 ) ̄x= 2 × 2 × 100 × 50
whichgives
x ̄=33.3mm