298 CHAPTER 9 Thin Plates
whereEandνareelasticvaluesofYoung’smodulusandPoisson’sratio.Inthelinearlyelasticregion,
η=1, which means that Eq. (9.7) may be applied at all stress levels. The derivation of a general
expression forηis outside the scope of this book, but one [Ref. 1] giving good agreement with
experimentis
η=
1 −ν^2 e
1 −ν^2 p
Es
E
[
1
2
+
1
2
(
1
4
+
3
4
Et
Es
)^12 ]
whereEtandEsarethetangentmodulusandsecantmodulus(stress/strain)oftheplateintheinelastic
regionandνeandνparePoisson’sratiointheelasticandinelasticranges.
9.3 ExperimentalDeterminationofCriticalLoadforaFlatPlate..................................
InSection8.3,wesawthatthecriticalloadforacolumnmaybedeterminedexperimentally,without
actuallycausingthecolumntobuckle,bymeansoftheSouthwellplot.Thecriticalloadforanactual,
rectangular,thinplateisfoundinasimilarmanner.
ThedisplacementofaninitiallycurvedplatefromthezeroloadpositionwasfoundinSection7.5,
tobe
w 1 =
∑∞
m= 1
∑∞
n= 1
Bmnsin
mπx
a
sin
nπy
b
where
Bmn=
AmnNx
π^2 D
a^2
(
m+n
(^2) a 2
mb^2
) 2
−Nx
WeseethatthecoefficientsBmnincreasewithanincreaseofcompressiveloadintensityNx.Itfollows
thatwhenNxapproachesthecriticalvalue,Nx,CR,thetermintheseriescorrespondingtothebuckled
shapeoftheplatebecomesthemostsignificant.Forasquareplate,n=1andm=1giveaminimum
valueofcriticalloadsothatatthecenteroftheplate
w 1 =
A 11 Nx
Nx,CR−Nx
orrearranging
w 1 =Nx,CR
w 1
Nx
−A 11
Thus,agraphofw 1 plottedagainstw 1 /Nxwillhaveaslope,intheregionofthecriticalload,equalto
Nx,CR.