Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

298 CHAPTER 9 Thin Plates


whereEandνareelasticvaluesofYoung’smodulusandPoisson’sratio.Inthelinearlyelasticregion,
η=1, which means that Eq. (9.7) may be applied at all stress levels. The derivation of a general
expression forηis outside the scope of this book, but one [Ref. 1] giving good agreement with
experimentis


η=

1 −ν^2 e
1 −ν^2 p

Es
E

[

1

2

+

1

2

(

1

4

+

3

4

Et
Es

)^12 ]

whereEtandEsarethetangentmodulusandsecantmodulus(stress/strain)oftheplateintheinelastic
regionandνeandνparePoisson’sratiointheelasticandinelasticranges.


9.3 ExperimentalDeterminationofCriticalLoadforaFlatPlate..................................


InSection8.3,wesawthatthecriticalloadforacolumnmaybedeterminedexperimentally,without
actuallycausingthecolumntobuckle,bymeansoftheSouthwellplot.Thecriticalloadforanactual,
rectangular,thinplateisfoundinasimilarmanner.
ThedisplacementofaninitiallycurvedplatefromthezeroloadpositionwasfoundinSection7.5,
tobe


w 1 =

∑∞

m= 1

∑∞

n= 1

Bmnsin

mπx
a

sin

nπy
b

where


Bmn=

AmnNx
π^2 D
a^2

(

m+n

(^2) a 2
mb^2


) 2

−Nx

WeseethatthecoefficientsBmnincreasewithanincreaseofcompressiveloadintensityNx.Itfollows
thatwhenNxapproachesthecriticalvalue,Nx,CR,thetermintheseriescorrespondingtothebuckled
shapeoftheplatebecomesthemostsignificant.Forasquareplate,n=1andm=1giveaminimum
valueofcriticalloadsothatatthecenteroftheplate


w 1 =

A 11 Nx
Nx,CR−Nx

orrearranging


w 1 =Nx,CR

w 1
Nx

−A 11

Thus,agraphofw 1 plottedagainstw 1 /Nxwillhaveaslope,intheregionofthecriticalload,equalto
Nx,CR.

Free download pdf