Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

22 CHAPTER 1 Basic Elasticity


ofthelineelementis


ε=lim
L→ 0

L

L

ThechangeinlengthoftheelementOAis(O′A′−OA)sothatthedirectstrainatOinthexdirection
isobtainedfromtheequation


εx=

O′A′−OA

OA

=

O′A′−δx
δx

(1.16)

Now,


(O′A′)^2 =

(

δx+u+

∂u
∂x

δx−u

) 2

+

(

v+

∂v
∂x

δx−v

) 2

+

(

w+

∂w
∂x

δx−w

) 2

or


O′A′=δx

√(

1 +

∂u
∂x

) 2

+

(

∂v
∂x

) 2

+

(

∂w
∂x

) 2

whichmaybewrittenwhensecond-ordertermsareneglected


O′A′=δx

(

1 + 2

∂u
∂x

)^12

Applyingthebinomialexpansiontothisexpression,wehave


O′A′=δx

(

1 +

∂u
∂x

)

(1.17)

inwhichsquaresandhigherpowersof∂u/∂xareignored.SubstitutingforO′A′inEq.(1.16),wehave


Itfollowsthat

εx=

∂u
∂x

εy=

∂v
∂y

εz=

∂w
∂z


⎪⎪

⎪⎪

⎪⎪


⎪⎪

⎪⎪

⎪⎪


(1.18)

The shear strain at a point in a body is defined as the change in the angle between two mutually
perpendicular lines at the point. Therefore, if the shear strain in thexzplane isγxz, then the angle
betweenthedisplacedlineelementsO′A′andO′C′inFig.1.15isπ/ 2 −γxzradians.

Free download pdf