9.7Tension Field Beams 309
45 ◦,usuallyoftheorderof40◦and,inthetypeofbeamcommontoaircraftstructures,rarelybelow
38 ◦. For beams having all components made of the same material, the condition of minimum strain
energyleadstovariousequivalentexpressionsforα,oneofwhichis
tan^2 α=
σt+σF
σt+σS
(9.26)
in whichσFandσSare the uniform directcompressivestresses induced by the diagonal tension in
the flanges and stiffeners, respectively. Thus, from the second term on the right-hand side of either
Eq.(9.19)or Eq.(9.20),
σF=
W
2 AFtanα
(9.27)
inwhichAFisthecross-sectionalareaofeachflange.Also,fromEq.(9.23),
σS=
Wb
ASd
tanα (9.28)
whereASisthecross-sectionalareaofastiffener.SubstitutionofσtfromEq.(9.16)andσFandσSfrom
Eqs.(9.27)and(9.28)intoEq.(9.26)producesanequationwhichmaybesolvedforα.Analternative
expressionforα,againderivedfromaconsiderationofthetotalstrainenergyofthebeam,is
tan^4 α=
1 +td/ 2 AF
1 +tb/AS
(9.29)
Example 9.1
ThebeamshowninFig.9.12isassumedtohaveacompletetensionfieldweb.Ifthecross-sectionalareas
oftheflangesandstiffenersare,respectively,350mm^2 and300mm^2 andtheelasticsectionmodulusof
eachflangeis750mm^3 ,determinethemaximumstressinaflangeandalsowhetherornotthestiffeners
willbuckle.Thethicknessofthewebis2mm,andthesecondmomentofareaofastiffeneraboutan
axisintheplaneofthewebis2000mm^4 ;E=70000N/mm^2.
FromEq.(9.29),
tan^4 α=
1 + 2 × 400 /( 2 × 350 )
1 + 2 × 300 / 300
=0.7143
sothat
α=42.6◦
Themaximumflangestressoccursinthetopflangeatthebuilt-inendwherethebendingmoment
onthebeamisgreatestandthestressesduetobendinganddiagonaltensionareadditive.Therefore,
fromEq.(9.19),
FT=
5 × 1200
400
+
5
2tan42.6◦