1.15 Stress–Strain Relationships 33
FromEqs.(1.52),
εx=
1
200000
( 60 +0.3× 40 )= 360 × 10 −^6
εy=
1
200000
(− 40 −0.3× 60 )=− 290 × 10 −^6
FromEq.(1.50),theshearmodulus,G,isgivenby
G=
E
2 ( 1 +ν)
=
200000
2 ( 1 +0.3)
=76923N/mm^2
Hence,fromEqs.(1.52),
γxy=
τxy
G
=
50
76923
= 650 × 10 −^6
NowsubstitutinginEq.(1.35)forεx,εy,andγxy,
εI= 10 −^6
[
360 − 290
2
+
1
2
√
( 360 + 290 )^2 + 6502
]
whichgives
εI= 495 × 10 −^6
Similarly,fromEq.(1.36),
εII=− 425 × 10 −^6
FromEq.(1.37),
tan2θ=
650 × 10 −^6
360 × 10 −^6 + 290 × 10 −^6
= 1
Therefore,
2 θ= 45 ◦or225◦
sothat
θ=22.5◦or112.5◦
ThevaluesofεI,εII,andθareverifiedusingMohr’scircleofstrain(Fig.1.17).AxesOεandOγ
are set up, and the points Q 1 ( 360 × 10 −^6 ,^12 × 650 × 10 −^6 )and Q 2 (− 290 × 10 −^6 ,−^12 × 650 × 10 −^6 )