14.5 Crack Propagation 419
inwhicha 1 =a+rp,where,forplanestress
rp=
1
8 π
(
K
fy
) 2
(see[Ref.7])
ThecurvesrepresentedbyEq.(14.38)maybedividedintothreeregions.Thefirstcorrespondstoavery
slowcrackgrowthrate(< 10 −^8 m/cycle)wherethecurvesapproachathresholdvalueofstressintensity
factor Kthcorrespondingto4× 10 −^11 m/cycle—inotherwords,nocrackgrowth.Inthesecondregion
(10−^8 − 10 −^6 m/cycle), much of the crack life takes place and, for small ranges of K, Eq. (14.38)
mayberepresentedby
da
dN
=C(K)n (see[Ref.8]) (14.41)
in whichCandndepend on the material properties; over small ranges of da/dNand K,Candn
remain approximately constant. The third region corresponds to crack growth rates> 10 −^6 m/cycle,
whereinstabilityandfinalfailureoccur.
Anattempthasbeenmadetodescribethecompletesetofcurvesbytherelationship
da
dN
=
C(K)n
( 1 −R)Kc− K
(see[Ref.9]) (14.42)
in whichKcis the fracture toughness of the material obtained from toughness tests. Integration of
Eqs. (14.41) or (14.42) analytically or graphically gives an estimate of the crack growth life of the
structure,thatis,thenumberofcyclesrequiredforacracktogrowfromaninitialsizetoanunaccept-
ablelength,orthecrackgrowthrateorfailure,whicheveristhedesigncriterion.Thus,forexample,
integrationofEq.(14.41)gives,foraninfinitewidthplateforwhichα=1.0,
[N]NNfi=
1
C[(Smax−Smin)π
1
(^2) ]n
[
a(^1 −n/^2 )
1 −n/ 2
]af
ai
(14.43)
forn>2.Ananalyticalintegrationmayonlybecarriedoutifnisanintegerandαisintheformofa
polynomial;otherwisegraphicalornumericaltechniquesmustbeused.
SubstitutingthelimitsinEq.(14.43)andtakingNi=0,thenumberofcyclestofailureisgivenby
Nf=
2
C(n− 2 )[(Smax−Sm)π^1 /^2 ]n
[
1
a
(n− 2 )/ 2
i
−
1
a
(n− 2 )/ 2
f
]
(14.44)
Example 14.1
Aninfiniteplatecontainsacrackhavinganinitiallengthof0.2mmandissubjectedtoacyclicrepeated
stressrangeof175N/mm^2 .Ifthefracturetoughnessoftheplateis1708N/mm^3 /^2 andtherateofcrack
growthis40× 10 −^15 ( K)^4 mm/cycle,determinethenumberofcyclestofailure.