Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

424 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


Fig.15.1


Bending of a rubber eraser.


15.1 SymmetricalBending................................................................................


Althoughsymmetricalbendingisaspecialcaseofthebendingofbeamsofarbitrarycrosssection,we
shallinvestigatetheformerfirstsothatthemorecomplexgeneralcasemaybemoreeasilyunderstood.
Symmetricalbendingarisesinbeamswhichhaveeithersinglyordoublysymmetricalcrosssections;
examplesofbothtypesareshowninFig.15.2.Supposethatalengthofbeam,ofrectangularcrosssection,
say,issubjectedtoapure,saggingbendingmoment,M,appliedinaverticalplane.Weshalldefinethis
laterasanegativebendingmoment.ThelengthofbeamwillbendintotheshapeshowninFig.15.3(a)
inwhichtheuppersurfaceisconcaveandthelowerconvex.Itcanbeseenthattheupperlongitudinal
fibersofthebeamarecompressed,whilethelowerfibersarestretched.Itfollowsthat,asinthecaseof
theeraser,betweenthesetwoextremestherearefibersthatremainunchangedinlength.
Thedirectstressthereforevariesthroughthedepthofthebeamfromcompressionintheupperfibers
totensioninthelower.Clearly,thedirectstressiszeroforthefibersthatdonotchangeinlength;we
havecalledtheplanecontainingthesefiberstheneutralplane.Thelineofintersectionoftheneutral
planeandanycrosssectionofthebeamistermedtheneutralaxis(Fig.15.3(b)).
Theproblem,therefore,istodeterminethevariationofdirectstressthroughthedepthofthebeam,
thevaluesofthestresses,andsubsequentlytofindthecorrespondingbeamdeflection.


15.1.1 Assumptions


Theprimaryassumptionmadeindeterminingthedirectstressdistributionproducedbypurebending
isthatplanecrosssectionsofthebeamremainplaneandnormaltothelongitudinalfibersofthebeam
afterbending.Again,wesawthisfromthelinesonthesideoftheeraser.Weshallalsoassumethatthe
materialofthebeamislinearlyelastic—thatis,itobeysHooke’slawandthatthematerialofthebeam
ishomogeneous.

Free download pdf