Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

428 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


eitherendofST,weseethatthemomentresultantabouttheneutralaxisofthestressesonallsuchfibers
mustbeequivalenttotheappliednegativemomentM;thatis,


M=−


A

E

y^2
R

dA

or


M=−

E

R


A

y^2 dA (15.6)

Theterm



Ay

(^2) dAisknownasthesecondmomentofareaofthecrosssectionofthebeamaboutthe
neutralaxisandisgiventhesymbolI.RewritingEq.(15.6),wehave


M=−

EI

R

(15.7)

or,combiningthisexpressionwithEq.(15.2)


M
I

=−

E

R

=

σz
y

(15.8)

FromEq.(15.8),weseethat


σz=

My
I

(15.9)

The direct stress,σz, at any point in the cross section of a beam is therefore directly proportional to
thedistanceofthepointfromtheneutralaxisandsovarieslinearlythroughthedepthofthebeamas
shown,forthesectionJK,inFig.15.5(b).Clearly,forapositivebendingmomentσzispositive—thatis,
tensile—whenyispositiveandcompressive(i.e.,negative)whenyisnegative.Thus,inFig.15.5(b),


σz,1=

My 1
I

(compression) σz,2=

My 2
I

(tension) (15.10)

Furthermore,weseefromEq.(15.7)thatthecurvature,1/R,ofthebeamisgivenby


1
R

=

M

EI

(15.11)

andisthereforedirectlyproportionaltotheappliedbendingmomentandinverselyproportionaltothe
productEIwhichisknownastheflexuralrigidityofthebeam.


Example 15.1
The cross section of a beam has the dimensions shown in Fig. 15.6(a). If the beam is subjected to a
negativebendingmomentof100kNmappliedinaverticalplane,determinethedistributionofdirect
stressthroughthedepthofthesection.

Free download pdf