428 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
eitherendofST,weseethatthemomentresultantabouttheneutralaxisofthestressesonallsuchfibers
mustbeequivalenttotheappliednegativemomentM;thatis,
M=−
∫
AE
y^2
RdAor
M=−E
R
∫
Ay^2 dA (15.6)Theterm
∫
Ay(^2) dAisknownasthesecondmomentofareaofthecrosssectionofthebeamaboutthe
neutralaxisandisgiventhesymbolI.RewritingEq.(15.6),wehave
M=−
EI
R
(15.7)
or,combiningthisexpressionwithEq.(15.2)
M
I=−
E
R
=
σz
y(15.8)
FromEq.(15.8),weseethat
σz=My
I(15.9)
The direct stress,σz, at any point in the cross section of a beam is therefore directly proportional to
thedistanceofthepointfromtheneutralaxisandsovarieslinearlythroughthedepthofthebeamas
shown,forthesectionJK,inFig.15.5(b).Clearly,forapositivebendingmomentσzispositive—thatis,
tensile—whenyispositiveandcompressive(i.e.,negative)whenyisnegative.Thus,inFig.15.5(b),
σz,1=My 1
I(compression) σz,2=My 2
I(tension) (15.10)Furthermore,weseefromEq.(15.7)thatthecurvature,1/R,ofthebeamisgivenby
1
R=
M
EI
(15.11)
andisthereforedirectlyproportionaltotheappliedbendingmomentandinverselyproportionaltothe
productEIwhichisknownastheflexuralrigidityofthebeam.
Example 15.1
The cross section of a beam has the dimensions shown in Fig. 15.6(a). If the beam is subjected to a
negativebendingmomentof100kNmappliedinaverticalplane,determinethedistributionofdirect
stressthroughthedepthofthesection.