428 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
eitherendofST,weseethatthemomentresultantabouttheneutralaxisofthestressesonallsuchfibers
mustbeequivalenttotheappliednegativemomentM;thatis,
M=−
∫
A
E
y^2
R
dA
or
M=−
E
R
∫
A
y^2 dA (15.6)
Theterm
∫
Ay
(^2) dAisknownasthesecondmomentofareaofthecrosssectionofthebeamaboutthe
neutralaxisandisgiventhesymbolI.RewritingEq.(15.6),wehave
M=−
EI
R
(15.7)
or,combiningthisexpressionwithEq.(15.2)
M
I
=−
E
R
=
σz
y
(15.8)
FromEq.(15.8),weseethat
σz=
My
I
(15.9)
The direct stress,σz, at any point in the cross section of a beam is therefore directly proportional to
thedistanceofthepointfromtheneutralaxisandsovarieslinearlythroughthedepthofthebeamas
shown,forthesectionJK,inFig.15.5(b).Clearly,forapositivebendingmomentσzispositive—thatis,
tensile—whenyispositiveandcompressive(i.e.,negative)whenyisnegative.Thus,inFig.15.5(b),
σz,1=
My 1
I
(compression) σz,2=
My 2
I
(tension) (15.10)
Furthermore,weseefromEq.(15.7)thatthecurvature,1/R,ofthebeamisgivenby
1
R
=
M
EI
(15.11)
andisthereforedirectlyproportionaltotheappliedbendingmomentandinverselyproportionaltothe
productEIwhichisknownastheflexuralrigidityofthebeam.
Example 15.1
The cross section of a beam has the dimensions shown in Fig. 15.6(a). If the beam is subjected to a
negativebendingmomentof100kNmappliedinaverticalplane,determinethedistributionofdirect
stressthroughthedepthofthesection.