1.15 Stress–Strain Relationships 35Inthecasewherethebarisreturnedtoitsoriginallengthorifthebarhadnotbeenallowedtoexpand
atall,thetotalstrainiszero,andfromEq.(1.56),
σ=−EαT (1.57)Equations (1.42) may now be modified to include the contribution of thermal strain. Therefore, by
comparingEq.(1.56),
εx=1
E
[σx−ν(σy+σz)]+αTεy=1
E
[σy−ν(σx+σz)]+αTεz=1
E
[σz−ν(σx+σy)]+αT⎫
⎪⎪
⎪⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎭
(1.58)
Equations(1.58)maybetransposedinthesamewayasEqs.(1.42)togivestress–strainrelationships
ratherthanstrain–stressrelationships:
σx=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εx−E
( 1 − 2 ν)αTσy=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εy−E
( 1 − 2 ν)αTσz=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εz−E
( 1 − 2 ν)αT⎫
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪⎭
(1.59)
Forthecaseofplanestressinwhichσz=0,theseequationsreduceto
σx=E
( 1 −ν^2 )(εx+νεy)−E
( 1 −ν)αTσy=E
( 1 −ν^2 )(εy+νεx)−E
( 1 −ν)αT⎫
⎪⎪
⎬
⎪⎪
⎭
(1.60)
Example 1.6
AcompositebaroflengthLhasacentralcoreofcopperlooselyinsertedinasleeveofsteel;theends
ofthesteelandcopperareattachedtoeachotherbyrigidplates.Ifthebarissubjectedtoatemperature
rise T,determinethestressinthesteelandcopperandtheextensionofthecompositebar.Thecopper
corehasaYoung’smodulusEc,across-sectionalareaAc,andacoefficientoflinearexpansionαc;the
correspondingvaluesforthesteelareEs,As,andαs.Assumethatαc>αs.
If the copper core and steel sleeve were allowed to expand freely, their final lengths would be
different, since they have different values of the coefficient of linear expansion. However, since they
arerigidlyattachedattheirends,onerestrainstheotherandanaxialstressisinducedineach.Suppose