15.1 Symmetrical Bending 431Now
Mx=100cos30◦=86.6kNm
My=100sin30◦=50.0kNm}
(iii)Mxis,inthiscase,apositivebendingmomentproducingtensionintheupperhalfofthebeamwhere
yispositive.Also,Myproducestensionintheleft-handhalfofthebeamwherexisnegative;weshall
thereforecallMyanegativebendingmoment.SubstitutingthevaluesofMxandMyfromEq.(iii)but
withtheappropriatesigninEq.(ii)togetherwiththevaluesofIxxandIyyfromExamples15.1and15.2,
weobtain
σz=86.6× 106
193.7× 106
y−50.0× 106
27.0× 106
x (iv)or
σz=0.45y−1.85x (v)Equation (v) gives the value of direct stress at any point in the cross section of the beam and may
alsobeusedtodeterminethedistributionoveranydesiredportion.Thus,ontheupperedgeofthetop
flangey=+150mm,100mm≥x≥−100mm,sothatthedirectstressvarieslinearlywithx.Atthetop
left-handcornerofthetopflange,
σz=0.45×(+ 150 )−1.85×(− 100 )=+252.5N/mm^2 (tension)Atthetopright-handcorner,
σz=0.45×(+ 150 )−1.85×(+ 100 )=−117.5N/mm^2 (compression)The distributions of direct stress over the outer edge of each flange and along the vertical axis of
symmetryareshowninFig.15.7.Notethattheneutralaxisofthebeamsectiondoesnotinthiscase
coincide with either thexoryaxis, although it still passes through the centroid of the section. Its
inclination,α,tothexaxis,say,canbefoundbysettingσz=0inEq.(v).Then,
0 =0.45y−1.85xor
y
x=
1.85
0.45
=4.11=tanαwhichgives
α=76.3◦NotethatαmaybefoundingeneraltermsfromEq.(ii)byagainsettingσz=0.Hence,
y
x=−
MyIxx
MxIyy=tanα (15.12)