15.1 Symmetrical Bending 431
Now
Mx=100cos30◦=86.6kNm
My=100sin30◦=50.0kNm
}
(iii)
Mxis,inthiscase,apositivebendingmomentproducingtensionintheupperhalfofthebeamwhere
yispositive.Also,Myproducestensionintheleft-handhalfofthebeamwherexisnegative;weshall
thereforecallMyanegativebendingmoment.SubstitutingthevaluesofMxandMyfromEq.(iii)but
withtheappropriatesigninEq.(ii)togetherwiththevaluesofIxxandIyyfromExamples15.1and15.2,
weobtain
σz=
86.6× 106
193.7× 106
y−
50.0× 106
27.0× 106
x (iv)
or
σz=0.45y−1.85x (v)
Equation (v) gives the value of direct stress at any point in the cross section of the beam and may
alsobeusedtodeterminethedistributionoveranydesiredportion.Thus,ontheupperedgeofthetop
flangey=+150mm,100mm≥x≥−100mm,sothatthedirectstressvarieslinearlywithx.Atthetop
left-handcornerofthetopflange,
σz=0.45×(+ 150 )−1.85×(− 100 )=+252.5N/mm^2 (tension)
Atthetopright-handcorner,
σz=0.45×(+ 150 )−1.85×(+ 100 )=−117.5N/mm^2 (compression)
The distributions of direct stress over the outer edge of each flange and along the vertical axis of
symmetryareshowninFig.15.7.Notethattheneutralaxisofthebeamsectiondoesnotinthiscase
coincide with either thexoryaxis, although it still passes through the centroid of the section. Its
inclination,α,tothexaxis,say,canbefoundbysettingσz=0inEq.(v).Then,
0 =0.45y−1.85x
or
y
x
=
1.85
0.45
=4.11=tanα
whichgives
α=76.3◦
NotethatαmaybefoundingeneraltermsfromEq.(ii)byagainsettingσz=0.Hence,
y
x
=−
MyIxx
MxIyy
=tanα (15.12)