15.2 Unsymmetrical Bending 439Fig.15.13
Cross section of beam in Example 15.4.
Thepositionofthecentroidofthesectionmaybefoundbytakingmomentsofareasaboutsome
convenientpoint.Thus,
( 120 × 8 + 80 × 8 )y= 120 × 8 × 4 + 80 × 8 × 48giving
y=21.6mmand
( 120 × 8 + 80 × 8 )x= 80 × 8 × 4 + 120 × 8 × 24giving
x=16mmThenextstepistocalculatethesectionpropertiesreferredtoaxesCxy(seeSection15.4)
Ixx=120 ×( 8 )^3
12
+ 120 × 8 ×(17.6)^2 +
8 ×( 80 )^3
12
+ 80 × 8 ×(26.4)^2
=1.09× 106 mm^4Iyy=8 ×( 120 )^3
12
+ 120 × 8 ×( 8 )^2 +
80 ×( 8 )^3
12
+ 80 × 8 ×( 12 )^2
=1.31× 106 mm^4
Ixy= 120 × 8 × 8 ×17.6+ 80 × 8 ×(− 12 )×(−26.4)=0.34× 106 mm^4