440 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
SinceMx=1500NmandMy=0,wehave,fromEq.(15.19),
σz=1.5y−0.39x (i)
inwhichtheunitsareNandmm.
ByinspectionofEq.(i),weseethatσxwillbeamaximumatFwherex=−8mm,y=−66.4mm.
Thus,
σz,max=−96N/mm^2 (compressive)
In some cases, the maximum value cannot be obtained by inspection so that values ofσzat several
pointsmustbecalculated.
15.2.5 Load Intensity, Shear Force, and Bending Moment
Relationships, General Case
Consideranelementoflengthδzofabeamofunsymmetricalcrosssectionsubjectedtoshearforces,
bendingmoments,andadistributedloadofvaryingintensity,allintheyzplaneasshowninFig.15.14.
Theforcesandmomentsarepositiveinaccordancewiththesignconventionpreviouslyadopted.Over
thelengthoftheelementwemayassumethattheintensityofthedistributedloadisconstant.Therefore,
forequilibriumoftheelementintheydirection
(
Sy+
∂Sy
∂z
δz
)
+wyδz−Sy= 0
fromwhich
wy=−
∂Sy
∂z
TakingmomentsaboutA,wehave
(
Mx+
∂Mx
∂z
δz
)
−
(
Sy+
∂Sy
∂z
δz
)
δz−wy
(δz)^2
2
−Mx= 0
Fig.15.14
Equilibrium of beam element supporting a general force system in theyzplane.