458 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
whichgives
Ixx=bd^3
12(15.35)
Similarly,
Iyy=db^3
12(15.36)
Frequently,itisusefultoknowthesecondmomentofareaofarectangularsectionaboutanaxiswhich
coincideswithoneofitsedges.Thus,inFig.15.27andusingtheparallelaxestheorem
IN=
bd^3
12+bd(
−
d
2) 2
=
bd^3
3(15.37)
Example 15.13
DeterminethesecondmomentsofareaIxxandIyyoftheI-sectionshowninFig.15.28.
UsingEq.(15.35),Ixx=bd^3
12−
(b−tw)d^3 w
12Alternatively,usingtheparallelaxestheoreminconjunctionwithEq.(15.35)
Ixx= 2[
btf^3
12+btf(
dw+tf
2) 2 ]
+
twdw^3
12Fig.15.28
Second moments of area of anI-section.