Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

460 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


whichgives


Ixx=

πd^4
64

(15.39)

Clearlyfromsymmetry


Iyy=

πd^4
64

(15.40)

Usingthetheoremofperpendicularaxes,thepolarsecondmomentofarea,Io,isgivenby


Io=Ixx+Iyy=

πd^4
32

(15.41)

15.4.4 Product Second Moment of Area


Theproductsecondmomentofarea,Ixy,ofabeamsectionwithrespecttoxandyaxesisdefinedby


Ixy=


A

xydA (15.42)

Thus,eachelementofareainthecrosssectionismultipliedbytheproductofitscoordinates,andthe
integrationistakenoverthecompletearea.Althoughsecondmomentsofareaarealwayspositive,since
elements of area are multiplied by the square of one of their coordinates, it is possible forIxyto be
negativeifthesectionliespredominantlyinthesecondandfourthquadrantsoftheaxessystem.Such
asituationwouldariseinthecaseoftheZ-sectionofFig.15.30(a)wheretheproductsecondmoment
ofareaofeachflangeisclearlynegative.
Aspecialcaseariseswhenone(orboth)ofthecoordinateaxesisanaxisofsymmetrysothatfor
anyelementofarea,δA,havingtheproductofitscoordinatespositive,thereisanidenticalelementfor
whichtheproductofitscoordinatesisnegative(Fig.15.30(b)).Summation(i.e.,integration)overthe


Fig.15.30


Product second moment of area.

Free download pdf