480 CHAPTER 16 Shear of Beams
Fig.16.1
(a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow system
on the element.
inclosedsectionbeams,byinternalpressure.Althoughwehavespecifiedthattmayvarywiths,this
variationissmallformostthin-walledstructuressothatwemayreasonablymaketheapproximation
thattisconstantoverthelengthδs.Also,fromEq.(1.4),wededucethatτzs=τsz=τ,say.However,
weshallfinditconvenienttoworkintermsofshearflowq—thatis,shearforceperunitlengthrather
thanintermsofshearstress.Hence,inFig.16.1(b),
q=τt (16.1)
andisregardedasbeingpositiveinthedirectionofincreasings.
Forequilibriumoftheelementinthezdirectionandneglectingbodyforces(seeSection1.2)
(
σz+
∂σz
∂z
δz
)
tδs−σztδs+
(
q+
∂q
∂s
δs
)
δz−qδz= 0
whichreducesto
∂q
∂s
+t
∂σz
∂z
= 0 (16.2)
Similarly,forequilibriuminthesdirection
∂q
∂z
+t
∂σs
∂s
= 0 (16.3)
Thedirectstressesσzandσsproducedirectstrainsεzandεs,whiletheshearstressτinducesashear
strainγ(=γzs=γsz).Weshallnowproceedtoexpressthesestrainsintermsofthethreecomponentsof
thedisplacementofapointinthesectionwall(seeFig.16.2).Ofthesecomponents,vtisatangential
displacementinthexyplaneandistakentobepositiveinthedirectionofincreasings;vnisanormal
displacementinthexyplaneandispositiveoutward;andwisanaxialdisplacementwhichhasbeen
definedpreviouslyinSection15.2.1.Immediately,fromthethirdofEqs.(1.18),wehave
εz=
∂w
∂z