40 CHAPTER 1 Basic Elasticity
Substitutingthevaluesofεa,εb,andεcinEq.(1.69),
εI=
10 −^6
2
( 1000 − 300 )+
10 −^6
√
2
√
( 1000 + 200 )^2 +(− 200 + 300 )^2
whichgives
εI= 1202 × 10 −^6
Similarly,fromEq.(1.70),
εII=− 502 × 10 −^6
NowsubstitutingforεIandεIIinEq.(1.67),
σI=
70000 × 10 −^6
1 −(0.3)^2
(− 502 +0.3× 1202 )=−80.9N/mm^2
Similarly,fromEq.(1.68),
σII=−10.9N/mm^2
Sinceσy=0,Eqs.(1.11)and(1.12)reduceto
σI=
σx
2
+
1
2
√
σx^2 + 4 τxy^2 (i)
and
σII=
σx
2
−
1
2
√
σx^2 + 4 τxy^2 (ii)
respectively.AddingEqs.(i)and(ii),weobtain
σI+σII=σx
Thus,
σx=80.9−10.9=70N/mm^2
ForanaxialloadP,
σx=70N/mm^2 =
P
A
=
P
π× 502 / 4
fromwhich
P=137.4kN
SubstitutingforσxineitherofEq.(i)orofEq.(ii)gives
τxy=29.7N/mm^2