504 CHAPTER 17 Torsion of Beams
Fig.17.2
Determination of the shear flow distribution in a closed section beam subjected to torsion.
shearflowactingonanelementδsofthebeamwallispqδs.Hence,
T=
∮
pqds
or,sinceqisconstantand
∮
pds= 2 A(seeSection16.3)
T= 2 Aq (17.1)
NotethattheoriginOoftheaxesinFig.17.2maybepositionedinoroutsidethecrosssectionof
thebeam,sincethemomentoftheinternalshearflows(whoseresultantisapuretorque)isthesame
aboutanypointintheirplane.Foranoriginoutsidethecrosssection,theterm
∮
pdswillinvolvethe
summationofpositiveandnegativeareas.Thesignofanareaisdeterminedbythesignofp,whichitself
isassociatedwiththesignconventionfortorqueasfollows.Ifthemovementofthefootofpalongthe
tangentatanypointinthepositivedirectionofsleadstoananticlockwiserotationofpabouttheorigin
ofaxes,pispositive.Thepositivedirectionofsisinthepositivedirectionofq,whichisanticlockwise
(correspondingtoapositivetorque).Thus,inFig.17.3ageneratorOA,rotatingaboutO,willinitially
sweepoutanegativearea,sincepAisnegative.AtB,however,pBispositivesothattheareasweptout
bythegeneratorhaschangedsign(atthepointwherethetangentpassesthroughOandp=0).Positive
andnegativeareascanceleachotheroutastheyoverlap,soasthegeneratormovescompletelyaround
thesection,startingandreturningtoA,say,theresultantareaisthatenclosedbytheprofileofthebeam.
ThetheoryofthetorsionofclosedsectionbeamsisknownastheBredt–Bathotheory,andEq.(17.1)
isoftenreferredtoastheBredt–Bathoformula.
17.1.1 Displacements Associated with the Bredt–Batho Shear Flow
TherelationshipbetweenqandshearstrainγestablishedinEq.(16.19),namely,
q=Gt
(
∂w
∂s
+
∂vt
∂z