Problems 43
P.1.7 Anelementofanelasticbodyissubjectedtoathree-dimensionalstresssystemσx,σy,andσz.Showthat
ifthedirectstrainsinthedirectionsx,y,andzareεx,εy,andεz,then
σx=λe+ 2 Gεx σy=λe+ 2 Gεy σz=λe+ 2 Gεz
where
λ=
νE
( 1 +ν)( 1 − 2 ν)
and e=εx+εy+εz
thevolumetricstrain.
P.1.8 Showthatthecompatibilityequationforthecaseofplanestrainsuchthat
∂^2 γxy
∂x∂y
=
∂^2 εy
∂x^2
+
∂^2 εx
∂y^2
maybeexpressedintermsofdirectstressesσxandσyintheform
(
∂^2
∂x^2
+
∂^2
∂y^2
)
(σx+σy)= 0
P.1.9 Abarofmildsteelhasadiameterof75mmandisplacedinsideahollowaluminumcylinderofinternal
diameter75mmandexternaldiameter100mm;bothbarandcylinderarethesamelength.Theresultingcomposite
bar is subjected to an axial compressive load of 1000kN. If the bar and cylinder contract by the same amount,
calculatethestressineach.
Thetemperatureofthecompressedcompositebaristhenreducedby150◦C,butnochangeinlengthispermitted.
CalculatethefinalstressinthebarandinthecylinderifE(steel)=200000N/mm^2 ,E(aluminum)=80000N/mm^2 ,
α(steel)=0.000012/◦C,andα(aluminum)=0.000005/◦C.
Ans. Duetoload:σ(steel)=172.6N/mm^2 (compression)
σ(aluminum)=69.1N/mm^2 (compression).
Finalstress:σ(steel)=187.4N/mm^2 (tension)
σ(aluminum)=9.1N/mm^2 (compression).
P.1.10 InFig.P.1.10,thedirectstrainsinthedirectionsa,b,care−0.002,−0.002,and+0.002,respectively.IfI
andIIdenoteprincipaldirections,findεI,εII,andθ.
Ans. εI=+0.00283 εII=−0.00283 θ=−22.5◦or+67.5◦.
Fig. P.1.10